List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/638951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009, 180, 911-916.	1.3	1,030
2	Threeâ€Dimensional Selfâ€Supported Metal Oxides for Advanced Energy Storage. Advanced Materials, 2014, 26, 3368-3397.	11.1	446
3	Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chemistry of Materials, 2009, 21, 63-67.	3.2	320
4	The Big Problem of Small Particles:  A Comparison of Methods for Determination of Particle Size in Nanocrystalline Anatase Powders. Chemistry of Materials, 2005, 17, 2378-2385.	3.2	256
5	Solidâ€State Ionics: Roots, Status, and Future Prospects. Journal of the American Ceramic Society, 2002, 85, 1654-1680.	1.9	228
6	Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. Journal of Applied Physics, 1999, 85, 897-902.	1.1	178
7	TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 2009, 54, 4262-4268.	2.6	137
8	Ionic Conductor Composites: Theory and Materials. , 2000, 5, 111-125.		117
9	Nanoarchitectured TiO ₂ /SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?. Chemistry of Materials, 2010, 22, 1926-1932.	3.2	107
10	Analysis of Temperature-Promoted and Solvent-Assisted Cross-Linking in Sulfonated Poly(ether ether) Tj ETQq0 (0 0 rgBT /C 1.2	overlock 10 Ti 104
11	Nanostructured negative electrodes based on titania for Li-ion microbatteries. Journal of Materials Chemistry, 2011, 21, 9925.	6.7	103
12	Building bridges: Crosslinking of sulfonated aromatic polymers—A review. Journal of Membrane Science, 2012, 423-424, 113-127.	4.1	102
13	Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics, 2006, 177, 229-236.	1.3	92
14	Thermogravimetric analysis of SPEEK membranes: Thermal stability, degree of sulfonation and cross-linking reaction. Journal of Analytical and Applied Pyrolysis, 2011, 92, 361-365.	2.6	92
15	Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. Journal of Power Sources, 2013, 224, 269-277.	4.0	89
16	A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 4041.	6.7	88

17	A Simple New Route to Covalent Organic/Inorganic Hybrid Proton Exchange Polymeric Membranes. Chemistry of Materials, 2006, 18, 69-75.	3.2	87
18	High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: Thermal stability, hydration level and mechanical properties. Journal of	4.1	85

Membrane Science, 2010, 354, 134-141.

#	Article	IF	CITATIONS
19	Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress–strain tests and dynamical analysis. Journal of Power Sources, 2010, 195, 7770-7775.	4.0	84
20	Grain growth of pure nickel and of a Ni-Si solid solution studied by differential scanning calorimetry on nanometer-sized crystals. Scripta Metallurgica Et Materialia, 1993, 28, 325-330.	1.0	81
21	Durability of Sulfonated Aromatic Polymers for Protonâ€Exchangeâ€Membrane Fuel Cells. ChemSusChem, 2011, 4, 1526-1536.	3.6	81
22	Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2. Journal of Membrane Science, 2011, 369, 536-544.	4.1	78
23	Composite Proton-Conducting Hybrid Polymers: Water Sorption Isotherms and Mechanical Properties of Blends of Sulfonated PEEK and Substituted PPSU. Chemistry of Materials, 2008, 20, 4327-4334.	3.2	72
24	Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces. Electrochemistry Communications, 2006, 8, 1840-1844.	2.3	65
25	Electrical and Point Defect Properties of TiO ₂ Nanotubes Fabricated by Electrochemical Anodization. Journal of Physical Chemistry C, 2011, 115, 5989-5996.	1.5	64
26	Sol–gel synthesis, X-ray photoelectron spectroscopy and electrical conductivity of Co-doped (La,) Tj ETQq0 0	0 rgBT /Ov	verlggk 10 Tf S
27	Anion-conducting ionomers: Study of type of functionalizing amine and macromolecular cross-linking. International Journal of Hydrogen Energy, 2014, 39, 14039-14049.	3.8	58
28	Crossâ€Linking of Sulfonated Poly(ether ether ketone) by Thermal Treatment: How Does the Reaction Occur?. Fuel Cells, 2013, 13, 107-117.	1.5	56
29	Solute segregation, electrical properties and defect thermodynamics of nanocrystalline TiO2 and CeO2. Solid State Ionics, 2000, 136-137, 1215-1224.	1.3	54
30	Development of an ammonia gas sensor. Sensors and Actuators B: Chemical, 2003, 95, 170-176.	4.0	53
31	Electropolymerization of copolymer electrolyte into titania nanotube electrodes for high-performance 3D microbatteries. Electrochemistry Communications, 2011, 13, 894-897.	2.3	52
32	EXAFS Study of Dopant Segregation (Zn, Nb) in Nanocrystalline Anatase (TiO2). Chemistry of Materials, 2003, 15, 4996-5002.	3.2	51
33	Hybrid materials for polymer electrolyte membrane fuel cells: Water uptake, mechanical and transport properties. Journal of Membrane Science, 2007, 304, 76-81.	4.1	51
34	Mechanical properties of anion exchange membranes by combination of tensile stress-strain tests and dynamic mechanical analysis. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1180-1187.	2.4	51
35	The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries. Electrochimica Acta, 2013, 88, 814-820.	2.6	50
36	Thermal Stability and Thermodynamic Properties of Hybrid Proton-Conducting Polyaryl Etherketones. Journal of Physical Chemistry B, 2006, 110, 15817-15823.	1.2	49

#	Article	IF	CITATIONS
37	Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 43-47.	1.5	48
38	Emf Measurements on Nanocrystalline Copper-Doped Ceria. Journal of Solid State Chemistry, 1998, 140, 295-299.	1.4	46
39	Nonstoichiometry and relaxation kinetics of nanocrystalline mixed praseodymium–Cerium oxide Pr0·7Ce0·3O2â~'x. Journal of the European Ceramic Society, 1999, 19, 831-836.	2.8	46
40	High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. Journal of Power Sources, 2015, 273, 1182-1188.	4.0	45
41	Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 2017, 42, 3197-3205.	3.8	44
42	Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure. Journal of the European Ceramic Society, 2007, 27, 2641-2646.	2.8	41
43	Organic–inorganic hybrid membranes based on sulfonated polyaryl–ether–ketones: Correlation between water uptake and electrical conductivity. Solid State Ionics, 2008, 179, 1161-1165.	1.3	41
44	High performance sulfonated aromatic ionomers byÂsolvothermal macromolecular synthesis. International Journal of Hydrogen Energy, 2012, 37, 8672-8680.	3.8	41
45	Improving the corrosion properties of amorphous Ni-P thin films using different additives. Surface and Coatings Technology, 2018, 345, 40-52.	2.2	41
46	Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells. International Journal of Hydrogen Energy, 2011, 36, 8063-8069.	3.8	39
47	Electrochemical fabrication of Sn nanowires on titania nanotube guide layers. Nanotechnology, 2008, 19, 205601.	1.3	38
48	Mechanistic Study of Sn Electrodeposition on TiO ₂ Nanotube Layers: Thermodynamics, Kinetics, Nucleation, and Growth Modes. Journal of Physical Chemistry C, 2009, 113, 20568-20575.	1.5	38
49	Water Activity Coefficient and Proton Mobility in Hydrated Acidic Polymers. Journal of the Electrochemical Society, 2011, 158, B159.	1.3	38
50	Nanocomposite Electrode for Li-Ion Microbatteries Based on SnO on Nanotubular Titania Matrix. Electrochemical and Solid-State Letters, 2009, 12, A186.	2.2	37
51	Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films. Electrochimica Acta, 2012, 62, 192-198.	2.6	37
52	Energetics of intra- and intermolecular bonds in ï‰-alkanediols. III. Thermochemical study of 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, and 1,10-decanediol at 298.15â€,K. Canadian Journal of Chemistry, 1990, 68, 731-734.	0.6	36
53	Self-assembled nanocomposite organic–inorganic proton conducting sulfonated poly-ether-ether-ketone (SPEEK)-based membranes: Optimized mechanical, thermal and electrical properties. Journal of Power Sources, 2009, 192, 353-359.	4.0	36
54	Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route. Polymer, 2019, 185, 121931.	1.8	36

#	Article	IF	CITATIONS
55	Ionic and electronic conduction in nanostructured solids: Concepts and concerns, consensus and controversies. Solid State Ionics, 2006, 177, 2495-2502.	1.3	35
56	Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties. Journal of Materials Research, 2012, 27, 1950-1957.	1.2	34
57	Energetics of intra- and intermolecular bonds in ?-alkanediols. Structural Chemistry, 1990, 1, 43-46.	1.0	33
58	Electrical conductivity of model composites of an ionic conductor (CuBr) and an insulator (TiO2,) Tj ETQq0 0 0 rg	gBT /Overl 1.3	ock_10 Tf 50
59	Morphology, Electrical Conductivity, and Reactivity of Mixed Conductor CuBr Films:  Development of a New Ammonia Gas Detector. Journal of Physical Chemistry B, 2001, 105, 8327-8333.	1.2	33
60	Sulfonated aromatic ionomers: Analysis of proton conductivity and proton mobility. Solid State Ionics, 2012, 225, 255-259.	1.3	33
61	Niobium Alloying of Selfâ€Organized TiO ₂ Nanotubes as an Anode for Lithiumâ€lon Microbatteries. Advanced Materials Technologies, 2018, 3, 1700274.	3.0	33
62	Effective ion mobility in anion exchange ionomers: Relations with hydration, porosity, tortuosity, and percolation. Journal of Membrane Science, 2021, 617, 118622.	4.1	33
63	Enhanced conductivity in ionic conductor-insulator composites: Experiments and numerical model. Applied Physics Letters, 1997, 71, 1335-1337.	1.5	32
64	Highly sensitive and selective room temperature NH3 gas microsensor using an ionic conductor (CuBr) film. Analytica Chimica Acta, 2004, 515, 279-284.	2.6	32
65	Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Research Letters, 2012, 7, 349.	3.1	32
66	Cross-linked sulfonated aromatic ionomers via SO 2 bridges: Conductivity properties. Journal of Power Sources, 2013, 243, 488-493.	4.0	32

	Power Sources, 2013, 243, 488-493.		-
67	Tin-Based composite Materials Fabricated by Anodic Oxidation for the Negative Electrode of Li-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1094.	1.3	31
68	Theoretical Analysis of IS of Polycrystalline Materials with Blocking or Conducting Grain Boundaries: From Microcrystals to Nanocrystals. Journal of the Electrochemical Society, 2003, 150, E348.	1.3	30
69	Thermal crosslinked and nanodiamond reinforced SPEEK composite membrane for PEMFC. International Journal of Hydrogen Energy, 2013, 38, 3346-3351.	3.8	30
70	New insight into the mechanism of cathodic electrodeposition of zinc oxide thin films onto vitreous carbon. Electrochimica Acta, 2013, 94, 238-244.	2.6	29
71	Composite anion exchange membranes with functionalized hydrophilic or hydrophobic titanium dioxide. International Journal of Hydrogen Energy, 2017, 42, 19178-19189.	3.8	29
72	Theoretical analysis of the impedance spectra of electroceramics Part 2: isotropic grain boundaries. Journal of Electroceramics, 2006, 16, 229-238.	0.8	27

5

#	Article	IF	CITATIONS
73	Local Atomic and Electronic Structure in Nanocrystalline Sn-Doped Anatase TiO2. ChemPhysChem, 2006, 7, 2377-2383.	1.0	27
74	Mechanical properties of hybrid proton conducting polymer blends based on sulfonated polyetheretherketones. Journal of Power Sources, 2008, 178, 667-670.	4.0	27
75	Sulfonated polyphenyl ether by electropolymerization. Electrochimica Acta, 2012, 81, 58-63.	2.6	27
76	Proton Mobility in Sulfonated PolyEtherEtherKetone (SPEEK): Influence of Thermal Crosslinking and Annealing. Fuel Cells, 2013, 13, 79-85.	1.5	27
77	Tuneable properties of carbon quantum dots by different synthetic methods. Journal of Nanostructure in Chemistry, 2022, 12, 565-580.	5.3	27
78	Energetics of inter. and intramolecular bonds in alkanediols. iv. the thermochemical study of 1,2-alkanediols at 298.15 K. Thermochimica Acta, 1990, 164, 145-152.	1.2	26
79	Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects. Acta Materialia, 2006, 54, 3575-3583.	3.8	26
80	Synthetic strategies for the preparation of proton-conducting hybrid polymers based on PEEK and PPSU for PEM fuel cells. Comptes Rendus Chimie, 2008, 11, 1074-1081.	0.2	26
81	Layered Double Hydroxides Containing an Ionic Liquid: Ionic Conductivity and Use in Composite Anion Exchange Membranes. ChemElectroChem, 2018, 5, 2781-2788.	1.7	26
82	Cation-conducting ionomers made by ion exchange of sulfonated poly-ether-ether-ketone: Hydration, mechanical and thermal properties and ionic conductivity. Journal of Membrane Science, 2014, 465, 185-192.	4.1	25
83	Effects of anion substitution on hydration, ionic conductivity and mechanical properties of anion-exchange membranes. New Journal of Chemistry, 2016, 40, 3671-3676.	1.4	25
84	Electrodeposition of Nanocrystalline Silver:Â Study of Grain Growth by Measurement of Reversible Electromotive Force. Journal of Physical Chemistry B, 1997, 101, 7452-7454.	1.2	24
85	Mott–Schottky analysis of polycrystalline copper(I) bromide in aqueous electrolytes. Journal of Electroanalytical Chemistry, 1998, 442, 229-234.	1.9	24
86	Electrochemically engineered single Li-ion conducting solid polymer electrolyte on titania nanotubes for microbatteries. Journal of Power Sources, 2017, 353, 95-103.	4.0	24
87	Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 22902-22910.	4.0	24
88	Preparation of thin films of copper(I) bromide by r.f. sputtering: morphology and electrical properties. Thin Solid Films, 1998, 323, 31-36.	0.8	23
89	Electrical properties of CuI and the phase boundary Cu \hat{A}^{\dagger}_{1} CuI. Solid State lonics, 1995, 76, 229-235.	1.3	22
90	Direct preparation of crystalline CuInS2 thin films by radiofrequency sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 157, 66-71.	1.7	21

#	Article	IF	CITATIONS
91	Semiconductor Properties of Polycrystalline CuBr by Hall Effect and Capacitive Measurements. Physica Status Solidi A, 1998, 165, 461-465.	1.7	20
92	Microporous Stilbite single crystals for alcohol sensing. Journal of Electroceramics, 2006, 16, 93-98.	0.8	20
93	Electrochemical Fabrication and Properties of Highly Ordered Feâ€Doped TiO ₂ Nanotubes. ChemPhysChem, 2012, 13, 3707-3713.	1.0	20
94	Enhancing the corrosion resistance of Cu/Ni-P/Au electrical contacts by electropolymerized poly(methyl methacrylate). Corrosion Science, 2019, 149, 75-86.	3.0	20
95	Single-step electrodeposition of superhydrophobic black NiO thin films. Journal of Applied Electrochemistry, 2019, 49, 621-629.	1.5	19
96	Influence of ions and molecules on single crystal zeolite conductivity under in situ conditions. Solid State Ionics, 2001, 143, 433-444.	1.3	18
97	How to improve Nafion with tailor made annealing. RSC Advances, 2018, 8, 27268-27274.	1.7	18
98	Calorimetric analysis of thinâ€film reactions: Experiments and modeling in the nickel/silicon system. Journal of Applied Physics, 1994, 76, 5195-5201.	1.1	17
99	Sulfonated Aromatic Polymers as Proton-Conducting Solid Electrolytes for Fuel Cells: a Short Review. Zeitschrift Fur Physikalische Chemie, 2013, 227, 595-614.	1.4	17
100	Theoretical and experimental infrared spectra of hydrated and dehydrated sulfonated poly(ether) Tj ETQq0 0 0 r	gBT /Over 1.8	lock 10 Tf 50 17
101	Porous NASICON-Type Li3Fe2(PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion Microbatteries. Nanoscale Research Letters, 2016, 11, 365.	3.1	17
102	Enhanced electrical conductivity of CuBrâ€TiO ₂ composites: Dependence on temperature, volume fractions and grain sizes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 945-952.	0.9	16
103	Enhanced conductivity in ionic conductor-insulator composites: numerical models in two and three dimensions. European Physical Journal B, 2001, 22, 421-427.	0.6	16
104	Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte. Nanoscale Research Letters, 2014, 9, 544.	3.1	16
105	STUDY OF TWO-PHASE MIXTURES COPPER(I) BROMIDE-ALUMINA BY IMPEDANCE SPECTROSCOPY. Journal of Physics and Chemistry of Solids, 1997, 58, 319-324.	1.9	15
106	Electrical properties of thin-films of the mixed ionic-electronic conductor CuBr: influence of electrode metals and gaseous ammonia. Journal of the European Ceramic Society, 1999, 19, 823-826.	2.8	15
107	Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. Comptes Rendus Chimie, 2013, 16, 80-88.	0.2	15
108	Electropolymerization of sulfonated phenol by cyclic voltammetry. Journal of Applied Polymer Science, 2013, 129, 1151-1156.	1.3	15

#	Article	IF	CITATIONS
109	Study of compaction and sintering of nanosized oxide powders by in situ electrical measurements and dilatometry: Nano CeO2—case study. Journal of Electroceramics, 2015, 34, 82-90.	0.8	15
110	Electrochemical synthesis of thin, dense, and conformal anion exchange membranes with quaternary ammonium groups. Electrochimica Acta, 2018, 265, 78-88.	2.6	15
111	Cu/Ni/Au multilayers by electrochemistry: A crucial system in electronics - A critical review. Microelectronic Engineering, 2019, 206, 25-44.	1.1	15
112	Solid State Electrochemical Characterisation of Nanostructured Silver Prepared by Cold-Rolling and Internal Oxidation. Scripta Materialia, 1998, 38, 1003-1007.	2.6	14
113	Defect and transport properties of nanocrystalline ceramics and thin films. Journal of Solid State Electrochemistry, 2002, 6, 165-171.	1.2	14
114	Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films. Comptes Rendus Chimie, 2008, 11, 1016-1022.	0.2	14
115	Chemomechanics of acidic ionomers: Hydration isotherms and physical model. Journal of Power Sources, 2014, 267, 692-699.	4.0	14
116	Study of Annealed AquivionÂ [®] lonomers with the INCA Method $\hat{a} \in$. Membranes, 2019, 9, 134.	1.4	14
117	Combustion calorimetry on milligram samples of liquid substances with a CRMT rocking bomb calorimeter. Application to the study of ï‰-alkanediols at 298.15 K. Journal of Chemical Thermodynamics, 1989, 21, 203-210.	1.0	13
118	Preparation and Electrical Properties of Dense Ceramics with NASICON Composition Sintered at Reduced Temperatures. Journal of Electroceramics, 2004, 13, 817-823.	0.8	13
119	Fluorideâ€ionâ€conducting Polymers: Ionic Conductivity and Fluoride Ion Diffusion Coefficient in Quaternized Polysulfones. ChemPhysChem, 2015, 16, 3631-3636.	1.0	13
120	Microstructure and ammonia gas sensitivity of sputtered films of the mixed ionic–electronic conductor CuBr. Thin Solid Films, 2001, 389, 5-7.	0.8	12
121	The Reconstruction of Natural Zeolites. , 2003, , .		12
122	Electrochemical deposition of indium: nucleation mode and diffusional limitation. Russian Journal of Electrochemistry, 2016, 52, 99-105.	0.3	12
123	LoLiPEM: Long life proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1921-1934.	3.8	12
124	Model Long Side-Chain PPO-Based Anion Exchange Ionomers: Properties and Alkaline Stability. Journal of Physical Chemistry C, 2020, 124, 1309-1316.	1.5	12
125	Anion Exchange Membranes with 1D, 2D and 3D Fillers: A Review. Polymers, 2021, 13, 3887.	2.0	12
126	Mixed ionic–electronic conducting thin-films of CuBr: a new active component for gas sensors?. Sensors and Actuators A: Physical, 1999, 74, 237-241.	2.0	11

#	Article	IF	CITATIONS
127	Zeolite Synthesis by the High-Pressure Hydrothermal Method: Synthesis of Natural 6-Ring Zeolites with Different Void Systems. Angewandte Chemie - International Edition, 2001, 40, 3831-3833.	7.2	11
128	Impedance analysis of CuBr films for ammonia gas detection. Sensors and Actuators B: Chemical, 2002, 87, 431-436.	4.0	11
129	Zeolite synthesis by simulation of their natural formation conditions: from macroscopic to nanosized crystals. Journal of Solid State Chemistry, 2003, 173, 27-31.	1.4	11
130	Tunable electrical properties of self-organized zirconia nanotubes. Electrochemistry Communications, 2011, 13, 1060-1062.	2.3	11
131	In situ dilatometric and impedance spectroscopic study of core–shell like structures: insights into the exceptional catalytic activity of nanocrystalline Cu-doped CeO ₂ . Journal of Materials Chemistry A, 2015, 3, 8369-8379.	5.2	11
132	Comparative study of the cation permeability of protonic, anionic and ampholytic membranes. Solid State lonics, 2017, 300, 97-105.	1.3	11
133	Determination of the crystallization enthalpies of lithium ion conducting alumino–silicate glasses. Journal of Non-Crystalline Solids, 2000, 262, 177-182.	1.5	10
134	Sorption of ammonia gas on the solid ion conductor Cu(i)Br. Physical Chemistry Chemical Physics, 2002, 4, 802-805.	1.3	10
135	Solution calorimetric investigation of AgCl–AgI ionic conductor composites at 298K: observation of metastable AgI modifications. Journal of Physics and Chemistry of Solids, 2002, 63, 9-14.	1.9	10
136	Electrochemical Synthesis and Characterization of Zirconia Nanotubes Grown from Zr Thin Films. Journal of the Electrochemical Society, 2010, 157, K279.	1.3	10
137	Novel lithium and sodium salts of sulfonamides and bis(sulfonyl)imides: synthesis and electrical conductivity. New Journal of Chemistry, 2014, 38, 6193-6197.	1.4	10
138	Morphological and optical properties of ZnO thin films grown on Si and ITO glass substrates. Ionics, 2018, 24, 277-284.	1.2	10
139	"Intrinsic―Anion Exchange Polymers through the Dissociation of Strong Basic Groups: PPO with Grafted Bicyclic Guanidines. Membranes, 2019, 9, 57.	1.4	10
140	Silica Containing Composite Anion Exchange Membranes by Sol–Gel Synthesis: A Short Review. Polymers, 2021, 13, 1874.	2.0	10
141	Electrical properties and sensor characteristics for NH3 gas of sputtered CuBr films. Sensors and Actuators B: Chemical, 1999, 59, 216-219.	4.0	9
142	Electrical conductivity of polycrystalline copper(I) bromide at low temperature (160–300 K). Solid State Ionics, 2002, 146, 423-427.	1.3	9
143	Novel fabrication technologies of 1D TiO _{2 nanotubes, vertical tin and iron-based nanowires for Li-ion microbatteries. International Journal of Nanotechnology, 2012, 9, 260.}	0.1	9
144	Lowâ€Permeability Poly(ether Ether Ketone)â€Based Ampholytic Membranes. ChemPlusChem, 2016, 81, 550-556.	1.3	9

#	Article	IF	CITATIONS
145	Ionic conductivity of Zn Al layered double hydroxide films grown on aluminum substrate. Solid State Ionics, 2018, 314, 30-35.	1.3	9
146	Hydration and Ionic Conductivity of Model Cation and Anion-Conducting Ionomers in Buffer Solutions (Phosphate, Acetate, Citrate). Journal of Physical Chemistry B, 2018, 122, 12009-12016.	1.2	9
147	Voltammetric determination of ascorbic acid with zinc oxide modified glassy carbon electrode. Journal of the Iranian Chemical Society, 2019, 16, 1957-1963.	1.2	9
148	Stimuli-responsive amphoteric ion exchange polymers bearing carboxylic and amine groups grafted to a cross-linkable silica network. European Polymer Journal, 2019, 112, 255-262.	2.6	9
149	E.M.F. and Calorimetric Investigations of Antimony Oxides. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 32-35.	0.9	8
150	Point defect creation induced by solid state reaction between nickel and silicon. Journal of Applied Physics, 1995, 77, 934-936.	1.1	8
151	Temperature effect on hydrothermal synthesis of wairakite and hsianghualite. Annales De Chimie: Science Des Materiaux, 1999, 24, 209-215.	0.2	8
152	Solid-State Electrolysis in CuBr Thin Films: Observation and Modelling of Fractal Growth. ChemPhysChem, 2002, 3, 107-110.	1.0	8
153	EXAFS Study of Dopant Ions with Different Charges in Nanocrystalline Anatase: Evidence for Space–Charge Segregation of Acceptor Ions. ChemPhysChem, 2009, 10, 1238-1246.	1.0	8
154	In situ study of electrochromic properties of self-assembled TiO2 nanotubes. Comptes Rendus Chimie, 2013, 16, 96-102.	0.2	8
155	Anion-conducting sulfaminated aromatic polymers by acid functionalization. RSC Advances, 2015, 5, 56636-56644.	1.7	8
156	A Short Overview of Biological Fuel Cells. Membranes, 2022, 12, 427.	1.4	8
157	Development and applications of a low-temperature differential thermal analyzer (77 < T, K < 330). Journal of Thermal Analysis, 1990, 36, 969-977.	0.7	7
158	Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers. Frontiers in Energy Research, 2014, 2, .	1.2	7
159	Mechanism study of Li ⁺ insertion into titania nanotubes. RSC Advances, 2015, 5, 28474-28477.	1.7	7
160	Anodic Electropolymerization of Sulfonated Poly(phenyl ether): Study of Precursor Isomers and Polymer Growth. ChemistrySelect, 2016, 1, 3114-3119.	0.7	7
161	Properties and Alkaline Stability of Composite Anion Conducting Ionomers Based on Poly(phenylene) Tj ETQq1 1 2917-2924.	0.784314	1 rgBT /Over 7
162	Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties. Polymers, 2021, 13, 475.	2.0	7

#	Article	IF	CITATIONS
163	Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochimica Acta, 2022, 427, 140861.	2.6	7
164	Influence of the surface composition of TiO2 on the electrical conductivity of CuBr–TiO2 composites. Solid State Ionics, 2002, 147, 115-121.	1.3	6
165	Electrical and Proton Conduction Properties of Amorphous TiO ₂ Nanotubes Fabricated by Electrochemical Anodization. ECS Transactions, 2011, 35, 21-31.	0.3	6
166	Stabilized Sulfonated Aromatic Polymers by in situ Solvothermal Cross-Linking. Frontiers in Energy Research, 2014, 2, .	1.2	6
167	Simple approach for the fabrication of PEDOT-coated Si nanowires. Beilstein Journal of Nanotechnology, 2015, 6, 640-650.	1.5	6
168	Sputterâ€Deposited Amorphous LiCuPO ₄ Thin Film as Cathode Material for Liâ€ion Microbatteries. ChemistrySelect, 2018, 3, 405-409.	0.7	6
169	Enthalpies of defect formation in lead titanate and lead zirconate. Materials Research Bulletin, 1986, 21, 115-120.	2.7	5
170	Combustion calorimetry on milligram samples of hygroscopic solid substances with a CRMT rocking bomb calorimeter thermochemical study of ï‰-alkanediols at 298.15 K. Part II. Journal of Chemical Thermodynamics, 1989, 21, 779-784.	1.0	5
171	Thermodynamic properties of antimony(III) niobate(V). Journal of Chemical Thermodynamics, 1990, 22, 481-485.	1.0	5
172	Electrical Conductivity of Composite Solid Electrolytes Copper(I) Bromide-Titanium Dioxide. , 1997, 1, 173-177.		5
173	Excess Gibbs free energy and kinetics of grain growth of nanostructured silver. Journal of Solid State Electrochemistry, 2001, 5, 107-111.	1.2	5
174	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 495-500.	1.5	5
175	Water adsorption/desorption in proton-conducting ionomer membranes: The model case of sulfonated and silylated poly-ether-ether-ketone. Solid State Ionics, 2012, 209-210, 9-14.	1.3	5
176	Influence of the position of ionic groups in amphoteric polyelectrolytes on hydration and ionic conduction: Side chain vs main chain. European Polymer Journal, 2019, 119, 45-51.	2.6	5
177	Calorimetric and microstructural study of nickel-silicon thin-film reactions. Applied Surface Science, 1991, 53, 120-125.	3.1	4
178	Copper halides as model compounds for study of interfaces in ionic crystals. lonics, 1996, 2, 208-212.	1.2	4
179	Proton Conductivity of Aromatic Polymers. , 2012, , 331-369.		4
180	CeO 2 Nanorods and Nanocubes: Impact of Nanoparticle Shape on Dilatometry and Electrical Properties. Journal of the American Ceramic Society, 2016, 99, 2415-2421.	1.9	4

#	Article	IF	CITATIONS
181	New aromatic polymer electrolytes for application in lithium metal batteries. New Journal of Chemistry, 2016, 40, 7840-7845.	1.4	4
182	Electrochemical synthesis of ion exchange polymers: Comparison between hydroxide and proton conductors. Solid State Ionics, 2020, 352, 115370.	1.3	4
183	Nanostructured, Metal-Free Electrodes for the Oxygen Reduction Reaction Containing Nitrogen-Doped Carbon Quantum Dots and a Hydroxide Ion-Conducting Ionomer. Molecules, 2022, 27, 1832.	1.7	4
184	A humidity-sensitive nanocomposite solid ion conductor: sulfonated poly-ether-ether-ketone in nanotubular TiO2 or ZrO2 matrix. Journal of Solid State Electrochemistry, 2018, 22, 3255-3260.	1.2	3
185	Ionomer Thinâ€Films by Electrochemical Synthesis: Bipolar and Ampholytic Membranes. ChemElectroChem, 2021, 8, 1493-1499.	1.7	3
186	Nanocomposite Anion Exchange Membranes with a Conductive Semi-Interpenetrating Silica Network. Membranes, 2021, 11, 260.	1.4	3
187	Calorimetric investigations on the SbNbO4-SbSbO4 system. Journal of Thermal Analysis, 1988, 33, 619-623.	0.7	2
188	Grain Growth and Reaction in Nickelâ€Silicon Thinâ€Films. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1410-1413.	0.9	2
189	Calorimetric and analytical investigations on nonstoichiometric lead lanthanum titanates. Journal of Solid State Chemistry, 1992, 99, 213-218.	1.4	2
190	Numerical models for ionic conduction in CuBr-TiO2 composites and for electrolysis of CuBr films. Ionics, 1999, 5, 200-205.	1.2	2
191	What can calorimetry contribute to the understanding of vitreous and composite solid electrolytes?. Solid State Ionics, 2000, 136-137, 955-959.	1.3	2
192	Numerical modelling of impedance spectra of ionic conductor–insulator core–shell composites. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 065001.	0.8	2
193	Nanocrystalline Oxides for Gas Sensing. , 2002, , 189-207.		2
194	Electrochemical synthesis of conformal, thin and dense ionomer separators for energy storage and conversion devices. Advanced Materials Letters, 2018, 9, 855-860.	0.3	2
195	Proton-Conducting Nanocomposites and Hybrid Polymers. , 2008, , 71-117.		2
196	Aliphatic Anion Exchange Ionomers with Long Spacers and No Ether Links by Ziegler–Natta Polymerization: Properties and Alkaline Stability. Molecules, 2022, 27, 395.	1.7	2
197	Anion-Conducting Polymer Electrolyte without Ether Linkages and with Ionic Groups Grafted on Long Side Chains: Poly(Alkylene Biphenyl Butyltrimethyl Ammonium) (ABBA). Membranes, 2022, 12, 337. -	1.4	2
198	Optical absorbance enhancement by electrochemical surface roughening of CuInS2 thin films. Journal of Materials Research, 2009, 24, 3044-3049.	1.2	1

#	Article	IF	CITATIONS
199	Point Defects in 3D and 1D Nanomaterials: The Model Case of Titanium Dioxide. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012004.	0.3	1
200	Properties of Composite Membranes of SPEEK and Nanodiamond. Materials Research Society Symposia Proceedings, 2012, 1384, 1.	0.1	1
201	Proton Mobility in Hydrated Acidic Polymers: Consequences for Optimization of Proton Conductivity. ECS Transactions, 2013, 50, 1037-1044.	0.3	1
202	In situ analysis of hydration and ionic conductivity of sulfonated poly(ether ether ketone) thin films using an interdigitated electrode array and a nanobalance. Journal of Sensors and Sensor Systems, 2022, 11, 51-59.	0.6	1
203	Study of nanostructured materials by solid state electrochemistry. Ionics, 1996, 2, 459-462.	1.2	0
204	Experimental Evidence for a Demixing Phenomenon in the Liquid State around the Binary Compound CoSi2. Journal of Physical Chemistry B, 1997, 101, 6692-6694.	1.2	0
205	Sensor Response of Stilbite Single Crystals Under "in Situ―Conditions. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
206	Application of CuBr Ion Conductor Thin-Films for Ammonia Gas Detection. Materials Research Society Symposia Proceedings, 2004, 835, K9.10.1.	0.1	0
207	Design of organic-inorganic hybrid membrane for polymer type fuel cell applications. , 2007, , .		0
208	Polymer electrolyte membrane development for Direct Methanol Fuel Cells powering portable microelectronic devices. , 2008, , .		0
209	Proposed Model of Water Adsorption/Desorption in a PEM Membrane. Defect and Diffusion Forum, 2010, 297-301, 209-214.	0.4	0
210	Direct Electropolymerization of Copolymer Electrolyte into 3D Nano-Architectured Electrodes for High-Performance Hybrid Li-ion Macrobatteries. ECS Transactions, 2010, 33, 77-85.	0.3	0
211	"Give Energy to Your Study― Students Worldwide Gather in Europe To Design Future Materials for Energy Storage and Conversion. Journal of Chemical Education, 2011, 88, 1203-1206.	1.1	0
212	Proton-Conducting Cross-Linked Sulfonated Aromatic Polymers for Fuel Cells Application. Materials Research Society Symposia Proceedings, 2012, 1384, 1.	0.1	0
213	Solid Proton Conductors: Oxides and Polymers. Fuel Cells, 2013, 13, 4-5.	1.5	0
214	Cross-linked Aromatic Polymers for High Durability PEM Membranes: Materials and Methods. ECS Transactions, 2013, 50, 1021-1030.	0.3	0
215	Nanostructured TiO2 Materials for New-Generation Li-Ion Batteries. , 2011, , 183-236.		0