Michael J Rauh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389458/publications.pdf

Version: 2024-02-01

MICHAEL I RALIH

#	Article	IF	CITATIONS
1	LPS-Induced Upregulation of SHIP Is Essential for Endotoxin Tolerance. Immunity, 2004, 21, 227-239.	14.3	281
2	SHIP Represses the Generation of Alternatively Activated Macrophages. Immunity, 2005, 23, 361-374.	14.3	271
3	SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Medicine, 2002, 8, 943-949.	30.7	237
4	The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Research, 2018, 78, 1457-1470.	0.9	216
5	Tet2 restrains inflammatory gene expression in macrophages. Experimental Hematology, 2017, 55, 56-70.e13.	0.4	210
6	Randomized Phase II Study of Azacitidine Alone or in Combination With Lenalidomide or With Vorinostat in Higher-Risk Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia: North American Intergroup Study SWOG S1117. Journal of Clinical Oncology, 2017, 35, 2745-2753.	1.6	205
7	An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Experimental Hematology, 2018, 59, 60-65.	0.4	141
8	SHIP Represses the Generation of IL-3-Induced M2 Macrophages by Inhibiting IL-4 Production from Basophils. Journal of Immunology, 2009, 183, 3652-3660.	0.8	103
9	SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Experimental Hematology, 2003, 31, 1170-1181.	0.4	94
10	Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Advances, 2019, 3, 2482-2486.	5.2	89
11	Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation, lacking cutaneous involvement: Case series and literature review. Leukemia Research, 2012, 36, 81-86.	0.8	82
12	Clonal hematopoiesis is associated with risk of severe Covid-19. Nature Communications, 2021, 12, 5975.	12.8	81
13	Clonal hematopoiesis and inflammation: Partners in leukemogenesis and comorbidity. Experimental Hematology, 2020, 83, 85-94.	0.4	77
14	Novel Mutations and Decreased Expression of the Epigenetic Regulator <i>TET2</i> in Pulmonary Arterial Hypertension. Circulation, 2020, 141, 1986-2000.	1.6	75
15	The role of SHIP1 in macrophage programming and activation. Biochemical Society Transactions, 2004, 32, 785-788.	3.4	64
16	The role of SHIP in macrophages. Frontiers in Bioscience - Landmark, 2007, 12, 2836.	3.0	55
17	Association of Clonal Hematopoiesis of Indeterminate Potential with Worse Kidney Function and Anemia in Two Cohorts of Patients with Advanced Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 985-995.	6.1	45
18	Age-Associated TET2 Mutations: Common Drivers of Myeloid Dysfunction, Cancer and Cardiovascular Disease. International Journal of Molecular Sciences, 2020, 21, 626.	4.1	42

Michael J Rauh

#	Article	IF	CITATIONS
19	TAZ induces lung cancer stem cell properties and tumorigenesis by up-regulating ALDH1A1. Oncotarget, 2017, 8, 38426-38443.	1.8	34
20	Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precision Oncology, 2019, 3, 1-11.	3.0	29
21	Implementation of an NCSâ€based sequencing and gene fusion panel for clinical screening of patients with suspected hematologic malignancies. European Journal of Haematology, 2019, 103, 178-189.	2.2	21
22	Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. Journal of Leukocyte Biology, 2017, 102, 209-219.	3.3	12
23	A DNA methylation-based liquid biopsy for triple-negative breast cancer. Npj Precision Oncology, 2021, 5, 53.	5.4	11
24	Longitudinal sequencing of <i><scp>RUNX</scp>1</i> familial platelet disorder: new insights into genetic mechanisms of transformation to myeloid malignancies. British Journal of Haematology, 2019, 186, 724-734.	2.5	9
25	Targeted, Amplicon-Based, Next-Generation Sequencing to Detect Age-Related Clonal Hematopoiesis. Methods in Molecular Biology, 2019, 2045, 167-180.	0.9	8
26	Validation, Implementation, and Clinical Impact of the Oncomine Myeloid Targeted-Amplicon DNA and RNA Ion Semiconductor Sequencing Assay. Journal of Molecular Diagnostics, 2021, 23, 1292-1305.	2.8	8
27	Cell origin–dependent cooperativity of mutant <i>Dnmt3a</i> and <i>Npm1</i> inÂclonal hematopoiesis and myeloid malignancy. Blood Advances, 2022, 6, 3666-3677.	5.2	8
28	Microangiopathic hemolytic anemia and leukoerythroblastic blood film heralding bone marrow metastatic gastroesophageal adenocarcinoma. Pathology Research and Practice, 2011, 207, 121-123.	2.3	7
29	A one-step tRNA-CRISPR system for genome-wide genetic interaction mapping in mammalian cells. Scientific Reports, 2019, 9, 14499.	3.3	7
30	The Myeloid-Kidney Interface in Health and Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 323-331.	4.5	5
31	Circulating Foamy Macrophages in the Golden Syrian Hamster (Mesocricetus auratus) Model of Leptospirosis. Journal of Comparative Pathology, 2021, 189, 98-109.	0.4	5
32	Tet2 Is a Novel Regulator of Murine Macrophage Differentiation and Polarization. Blood, 2015, 126, 646-646.	1.4	4
33	Validation and Clinical Impact of the Oncomine Myeloid Targeted DNA and RNA Ion Semiconductor Sequencing Assay. Blood, 2018, 132, 5523-5523.	1.4	4
34	Differential Expression of TCF3 Target Genes Defines Subclasses of Diffuse Large B-Cell Lymphoma with Striking Differences in Clinical Outcome Following R-CHOP Therapy. Blood, 2016, 128, 3037-3037.	1.4	3
35	Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis. Advances in Experimental Medicine and Biology, 2020, 1326, 1-10.	1.6	3
36	Bodies of evidence? Lymphoglandular bodies in aspirate smears of bone marrow involved by aggressive large B-cell lymphoma. Blood, 2014, 123, 3695-3695.	1.4	2

MICHAEL J RAUH

#	Article	IF	CITATIONS
37	Tet2-Deficient Bone Marrow Progenitors Have a Proliferative Advantage in the Presence of TNF-Alpha and IFN-Gamma: Implications for Clonal Dominance in Inflammaging and MDS. Blood, 2015, 126, 2850-2850.	1.4	2
38	Impact of Tet2 Deficiency, and of <i>TET2</i> Mutations in Clonal Hematopoiesis, on Neutrophil/Granulocyte Immune Function. Blood, 2021, 138, 2159-2159.	1.4	2
39	Objective quantification of BCL2 protein by multiplex immunofluorescence in routine biopsy samples of diffuse large B-cell lymphoma demonstrates associations with survival and <i>BCL2</i> gene alterations. Leukemia and Lymphoma, 2020, 61, 1334-1344.	1.3	1
40	Impact of Clonal Hematopoiesis in Ischemic and Nonischemic HeartÂFailure. Journal of the American College of Cardiology, 2021, 77, 1760-1762.	2.8	1
41	Suspicious, Non-MDS-Diagnostic Bone Marrows Have a High Incidence of Clonal Hematopoiesis (CHIP), with MDS-like Clone Size but Restricted Mutation Burden. Blood, 2015, 126, 1668-1668.	1.4	1
42	Tet2 Deficiency Leads to an Increased Inflammatory Phenotype in Murine Macrophages. Blood, 2016, 128, 708-708.	1.4	1
43	Increased Arginase 1 Expression In Human MDS, CMML and Murine Models Points To Dysregulation Of Common Immunosuppressive Signaling Networks. Blood, 2013, 122, 1578-1578.	1.4	1
44	Myeloid-Derived Suppressor Cells in Aged Humans. , 2018, , 1-12.		1
45	Dynamic Stromal Changes in Myelofibrosis Patients Pre/Post JAK Inhibition Is Revealed in Clinically Archived Bone Marrow Biopsies By Smooth Muscle Actin (SMA)-CD34 Dual Immunohistochemistry. Blood, 2021, 138, 3286-3286.	1.4	1
46	Emergence of JAK2-mutant primary myelofibrosis in myelodysplastic syndrome: rare case report, literature review, and implications for clonal progression. Journal of Hematopathology, 2012, 5, 135-139.	0.4	0
47	Standardizing dysgranulopoiesis in MDS and AML: Refining diagnostics and laying the foundation for novel morphological-genetic correlations. Leukemia Research, 2014, 38, 428-429.	0.8	0
48	A Host of Host Assays: The Clinical Accuracy of Two Host Gene Expression Assays in Acute Infection*. Critical Care Medicine, 2021, 49, 1812-1814.	0.9	0
49	Myeloid-Derived Suppressor Cell (MDSC) Dynamics In FVIII-Exposed Hemophilia A Mice: Novel Therapeutic Implications. Blood, 2013, 122, 3569-3569.	1.4	0
50	Testing for Heparin Induced Thrombocytopenia: Comparison of Practice at an Academic Center with Choosing Wisely Guidelines. Blood, 2015, 126, 3469-3469.	1.4	0
51	Microenvironmental Links Between TET2/DNMT3A Mutations and Arginase 1 Overexpression in Human MDS/CMML. Blood, 2016, 128, 3164-3164.	1.4	0
52	TNF-Alpha Promotes Clonal Expansion of Tet2 Deficient Bone Marrow Progenitors in MDS. Blood, 2016, 128, 731-731.	1.4	0
53	RNA-Seq Analysis of Clonal Hematopoiesis (CHIP) Blood Leukocytes Shows Dysregulation of Neutrophil / Innate Immunity-Related Genes. Blood, 2018, 132, 3843-3843.	1.4	0

#	Article	IF	CITATIONS
55	Clinical Utility of Hematopathologist-Triaged NGS Testing When Investigating Patients with Suspected MDS. Blood, 2021, 138, 4675-4675.	1.4	0