
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design of efficient nanosensor for glyphosate and temperature out of terbium complexes with 1,3-diketone calix[4]arenes. Sensors and Actuators B: Chemical, 2022, 350, 130845.	7.8	6
2	Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112664.	5.0	6
3	1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules, 2021, 26, 1214.	3.8	25
4	T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. Journal of Chemical Sciences, 2021, 133, 1.	1.5	4
5	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	6.5	93
6	Tailoring of silica nanoarchitecture to optimize Cu(2â^'x)S based image-guided chemodynamic therapy agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126996.	4.7	7
7	Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. Nanomaterials, 2021, 11, 3080.	4.1	12
8	Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313ÂK range. Scientific Reports, 2020, 10, 20541.	3.3	10
9	Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111306.	5.0	7
10	Synthetic Tuning of Coll-Doped Silica Nanoarchitecture Towards Electrochemical Sensing Ability. Nanomaterials, 2020, 10, 1338.	4.1	9
11	ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. Materials Science and Engineering C, 2020, 117, 111305.	7.3	12
12	A simple synthetic approach to enhance the thermal luminescence sensitivity of Tb ³⁺ complexes with thiacalix[4]arene derivatives through upper-rim bromination. Dalton Transactions, 2020, 49, 8298-8313.	3.3	7
13	Paramagnetic Relaxation Enhancement in Hydrophilic Colloids Based on Gd(III) Complexes with Tetrathia- and Calix[4]arenes. Journal of Physical Chemistry C, 2020, 124, 4320-4329.	3.1	17
14	Aptamer-Conjugated Tb(III)-Doped Silica Nanoparticles for Luminescent Detection of Leukemia Cells. Biomedicines, 2020, 8, 14.	3.2	14
15	Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca ²⁺ in motoneurons. Nanoscale, 2019, 11, 16103-16113.	5.6	13
16	Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3139.	4.1	15
17	Trapping of Gd(III) Ions by Keplerate Polyanionic Nanocapsules in Water: A ¹ H Fast Field Cycling NMR Relaxometry Study. Journal of Physical Chemistry C, 2019, 123, 18095-18102.	3.1	7
18	Aqueous solutions of triblock copolymers used as the media affecting the magnetic relaxation properties of gadolinium ions trapped by metal-oxide nanostructures. Journal of Molecular Liquids, 2019, 296, 111821.	4.9	8

#	Article	IF	CITATIONS
19	Nano-architecture of silica nanoparticles as a tool to tune both electrochemical and catalytic behavior of Nill@SiO2. RSC Advances, 2019, 9, 22627-22635.	3.6	5
20	Dual red-NIR luminescent Eu Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing. Materials Science and Engineering C, 2019, 105, 110057.	7.3	12
21	Synthesis of spherical iron-oxide nanoparticles of various sizes under different synthetic conditions. Chemical Papers, 2019, 73, 2715-2722.	2.2	1
22	Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application. Journal of Materials Science, 2019, 54, 9140-9154.	3.7	11
23	Luminescent complexes on a scaffold of P ₂ N ₂ -ligands: design of materials for analytical and biomedical applications. Pure and Applied Chemistry, 2019, 91, 839-849.	1.9	13
24	Structural and photophysical properties of Tb ³⁺ -tetra-1,3-diketonate complexes controlled by calix[4]arene-tetrathiacalix[4]arene scaffolds. Dalton Transactions, 2019, 48, 3930-3940.	3.3	13
25	[{Re ₆ Q ₈ }(SO ₃) ₆]O– (Q = S or Se): Facile Synthesis and Properties of the Most Highly Charged Octahedral Cluster Complexes and High Magnetic Relaxivity of Their Colloids with Gd ³⁺ Ions. Inorganic Chemistry, 2019, 58, 15889-15897.	4.0	5
26	Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. Materials Science and Engineering C, 2019, 95, 166-173.	7.3	8
27	Structure optimization for enhanced luminescent and paramagnetic properties of hydrophilic nanomaterial based on heterometallic Gd-Re complexes. Materials and Design, 2018, 146, 49-56.	7.0	15
28	Targeted Nanoparticles for Selective Marking of Neuromuscular Junctions and <i>ex Vivo</i> Monitoring of Endogenous Acetylcholine Hydrolysis. ACS Applied Materials & Interfaces, 2018, 10, 14948-14955.	8.0	18
29	Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence, 2018, 33, 588-593.	2.9	9
30	Silica nanoparticles with Tb(III)-centered luminescence decorated by Ag0 as efficient cellular contrast agent with anticancer effect. Journal of Inorganic Biochemistry, 2018, 182, 170-176.	3.5	7
31	Novel water soluble cationic Au(I) complexes with cyclic PNNP ligand as building blocks for heterometallic supramolecular assemblies with anionic hexarhenium cluster units. Journal of Luminescence, 2018, 196, 485-491.	3.1	16
32	Tuning magnetic relaxation properties of "hard cores―in core-shell colloids by modification of "soft shell― Colloids and Surfaces B: Biointerfaces, 2018, 162, 52-59.	5.0	19
33	One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 60-67.	4.7	22
34	Self-assembly of Gd ³⁺ -bound keplerate polyanions into nanoparticles as a route for the synthesis of positive MRI contrast agents. Impact of the structure on the magnetic relaxivity. Soft Matter, 2018, 14, 7916-7925.	2.7	11
35	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	3.3	27
36	Synthesis, metal binding and spectral properties of novel bis-1,3-diketone calix[4]arenes. New Journal of Chemistry, 2017, 41, 1526-1537.	2.8	21

#	Article	IF	CITATIONS
37	High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones. Scientific Reports, 2017, 7, 40486.	3.3	34
38	Nanoscale hydrophilic colloids with high relaxivity and low cytotoxicity based on Gd(<scp>iii</scp>) complexes with Keplerate polyanions. New Journal of Chemistry, 2017, 41, 5271-5275.	2.8	19
39	Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Materials Science and Engineering C, 2017, 76, 551-558.	7.3	32
40	Supporting effect of polyethylenimine on hexarhenium hydroxo cluster complex for cellular imaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 46-52.	3.9	27
41	Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Scientific Reports, 2017, 7, 14010.	3.3	22
42	Silica Nanospheres Coated by Ultrasmall Ag0 Nanoparticles for Oxidative Catalytic Application. Colloids and Interface Science Communications, 2017, 21, 1-5.	4.1	12
43	Influence of upper rim dibromo-substitution in bis-1,3-diketone calix[4]arenes on spectral properties of ligands and their lanthanide complexes. Tetrahedron, 2017, 73, 5397-5407.	1.9	15
44	Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids and Surfaces B: Biointerfaces, 2017, 149, 243-249.	5.0	26
45	Structure impact in antenna effect of novel upper rim substituted tetra-1,3-diketone calix[4]arenes on Tb(III) green and Yb(III) NIR-luminescence. Tetrahedron, 2016, 72, 2447-2455.	1.9	30
46	Sensing activity of cholinesterases through a luminescence response of the hexarhenium cluster complex [{Re ₆ S ₈ }(OH) ₆] ^{4â^'} . Analyst, The, 2016, 141, 4204-4210.	3.5	20
47	Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk. RSC Advances, 2016, 6, 1851-1859.	3.6	23
48	"Host–guest―binding of a luminescent dinuclear Au(<scp>i</scp>) complex based on cyclic diphosphine with organic substrates as a reason for luminescence tuneability. New Journal of Chemistry, 2016, 40, 9853-9861.	2.8	19
49	Polyelectrolyte-Stabilized Nanotemplates Based on Gd(III) Complexes with Macrocyclic Tetra-1,3-diketones as a Positive MR Contrast Agents. ChemistrySelect, 2016, 1, 1377-1383.	1.5	15
50	A Ni(<scp>iii</scp>) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C–H fluoroalkylation. Dalton Transactions, 2016, 45, 11976-11982.	3.3	27
51	Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosensors and Bioelectronics, 2016, 77, 871-878.	10.1	21
52	Interfacial interactions of hard polyelectrolyte-stabilized luminescent colloids with substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 231-240.	4.7	18
53	Tb(III)-Doped Silica Nanoparticles for Sensing: Effect of Interfacial Interactions on Substrate-Induced Luminescent Response. Langmuir, 2015, 31, 611-619.	3.5	21
54	Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation. Dalton Transactions, 2015, 44, 8833-8838.	3.3	19

#	Article	IF	CITATIONS
55	Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 185-191.	4.7	31
56	Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 450-458.	4.7	17
57	A facile synthetic route to convert Tb(iii) complexes of novel tetra-1,3-diketone calix[4]resorcinarene into hydrophilic luminescent colloids. New Journal of Chemistry, 2014, 38, 4130-4140.	2.8	20
58	Complex Formation of dâ€Metal Ions at the Interface of Tb ^{III} â€Doped Silica Nanoparticles as a Basis of Substrateâ€Responsive Tb ^{III} â€Centered Luminescence. ChemPhysChem, 2012, 13, 3357-3364.	2.1	35
59	Solution behavior of mixed systems based on novel amphiphilic cyclophanes and Triton X100: Aggregation, cloud point phenomenon and cloud point extraction of lanthanide ions. Journal of Colloid and Interface Science, 2010, 346, 405-413.	9.4	32
60	Dual Visible and Near-Infrared Luminescent Silica Nanoparticles. Synthesis and Aggregation Stability. Journal of Physical Chemistry C, 2010, 114, 6350-6355.	3.1	23
61	Novel Highly Charged Silica-Coated Tb(III) Nanoparticles with Fluorescent Properties Sensitive to Ion Exchange and Energy Transfer Processes in Aqueous Dispersions. Langmuir, 2009, 25, 3146-3151.	3.5	47
62	Head-to-tail Aggregates of Sulfonatomethylated Calix[4]resorcinarene in Aqueous Solutions. Supramolecular Chemistry, 2008, 20, 453-460.	1.2	33
63	Cloud point extraction of lanthanide(III) ions via use of Triton X-100 without and with water-soluble calixarenes as added chelating agents. Talanta, 2006, 68, 863-868.	5.5	52
64	A first report on ternary complex formation between p-sulfonatothiacalix[4]arene, tetramethylammonium ion and gadolinium (III) ion in aqueous solutions. Inorganic Chemistry Communication, 2005, 8, 821-824.	3.9	19
65	Complexation and Self-Assembling of Sulfonatomethylated Calix[4]resorcinarene with Both Organic and Lanthanide Ions in Aqueous Media. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 49, 203-209.	1.6	15
66	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40, 73-76.	1.6	25
67	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39, 65-69.	1.6	12
68	Aminoalkylated Calix[4]resorcinarenes as pH Sensitive "hosts―for Charged Metallocomplexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 397-407.	1.6	12