
## Thomas E Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388935/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bur1 functions with TORC1 for vacuoleâ€mediated cell cycle progression. EMBO Reports, 2022, 23, e53477.                                                                                                                                    | 4.5  | 8         |
| 2  | Cotranscriptional splicing efficiencies differ within genes and between cell types. Rna, 2021, 27, 829-840.                                                                                                                                | 3.5  | 16        |
| 3  | Locus-specific transcription silencing at the <i>FHIT</i> gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Research, 2021, 49, 7507-7524.                          | 14.5 | 16        |
| 4  | Mapping yeast mitotic 5′ resection at base resolution reveals the sequence and positional dependence of nucleases <i>in vivo</i> . Nucleic Acids Research, 2021, 49, 12607-12621.                                                          | 14.5 | 7         |
| 5  | Double-strand breaks in motion: implications for chromosomal rearrangement. Current Genetics, 2020, 66, 1-6.                                                                                                                               | 1.7  | 13        |
| 6  | Characterization of novel primary miRNA transcription units in human cells using Bru-seq nascent RNA sequencing. NAR Genomics and Bioinformatics, 2020, 2, lqz014.                                                                         | 3.2  | 10        |
| 7  | Twin peaks: finding fragile sites with MiDAS-seq. Cell Research, 2020, 30, 944-945.                                                                                                                                                        | 12.0 | 4         |
| 8  | ldentification of Suppressor of Clathrin Deficiency-1 ( <i>SCD1</i> ) and Its Connection to<br>Clathrin-Mediated Endocytosis in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2019,<br>9, 867-877.                       | 1.8  | 7         |
| 9  | Frequency of DNA end joining <i>in trans</i> is not determined by the predamage spatial proximity of double-strand breaks in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9481-9490. | 7.1  | 16        |
| 10 | Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell, 2019, 177, 837-851.e28.                                                                                                                   | 28.9 | 88        |
| 11 | Effects of hydroxyurea on CNV induction in the mouse germline. Environmental and Molecular<br>Mutagenesis, 2018, 59, 698-714.                                                                                                              | 2.2  | 5         |
| 12 | Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Scientific Reports, 2017, 7, 43598.                                                                                                 | 3.3  | 31        |
| 13 | Fragile sites in cancer: more than meets the eye. Nature Reviews Cancer, 2017, 17, 489-501.                                                                                                                                                | 28.4 | 187       |
| 14 | Mechanisms of glycosylase induced genomic instability. PLoS ONE, 2017, 12, e0174041.                                                                                                                                                       | 2.5  | 7         |
| 15 | Identifying transcription start sites and active enhancer elements using BruUV-seq. Scientific Reports, 2016, 5, 17978.                                                                                                                    | 3.3  | 27        |
| 16 | Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining. Nucleic Acids Research, 2016, 44, 2769-2781.                                                                      | 14.5 | 30        |
| 17 | Breaks in the brain. Nature, 2016, 532, 46-47.                                                                                                                                                                                             | 27.8 | 11        |
| 18 | Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Research, 2015, 25, 189-200.                                                                                        | 5.5  | 152       |

THOMAS E WILSON

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pooled Segregant Sequencing Reveals Genetic Determinants of Yeast Pseudohyphal Growth. PLoS<br>Genetics, 2014, 10, e1004570.                                                                                                 | 3.5 | 24        |
| 20 | Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding. DNA Repair, 2014, 24, 37-45.                                                                            | 2.8 | 8         |
| 21 | Copy number variants are produced in response to lowâ€dose ionizing radiation in cultured cells.<br>Environmental and Molecular Mutagenesis, 2014, 55, 103-113.                                                              | 2.2 | 41        |
| 22 | Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA.<br>Methods, 2014, 67, 45-54.                                                                                               | 3.8 | 145       |
| 23 | Release from Myosin V via Regulated Recruitment of an E3ÂUbiquitin Ligase Controls Organelle<br>Localization. Developmental Cell, 2014, 28, 520-533.                                                                         | 7.0 | 25        |
| 24 | Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Research, 2014, 24, 896-905.                                                                          | 5.5 | 229       |
| 25 | Building on the past, shaping the future: The environmental mutagenesis and genomics society.<br>Environmental and Molecular Mutagenesis, 2013, 54, 153-157.                                                                 | 2.2 | 2         |
| 26 | Repair of Double-Strand Breaks by End Joining. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012757-a012757.                                                                                                         | 5.5 | 309       |
| 27 | Saccharomyces cerevisiae DNA Ligase IV Supports Imprecise End Joining Independently of Its Catalytic<br>Activity. PLoS Genetics, 2013, 9, e1003599.                                                                          | 3.5 | 26        |
| 28 | Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced<br>proinflammatory response. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 2240-2245. | 7.1 | 112       |
| 29 | De Novo CNV Formation in Mouse Embryonic Stem Cells Occurs in the Absence of Xrcc4-Dependent Nonhomologous End Joining. PLoS Genetics, 2012, 8, e1002981.                                                                    | 3.5 | 51        |
| 30 | Hydroxyurea induces de novo copy number variants in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17360-17365.                                                    | 7.1 | 82        |
| 31 | Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5′ end processing during base excision repair. DNA Repair, 2010, 9, 690-699.                                                        | 2.8 | 23        |
| 32 | Evidence that base stacking potential in annealed 3′ overhangs determines polymerase utilization in yeast nonhomologous end joining. DNA Repair, 2008, 7, 67-76.                                                             | 2.8 | 19        |
| 33 | Recruitment and Dissociation of Nonhomologous End Joining Proteins at a DNA Double-Strand Break in <i>Saccharomyces cerevisiae</i> . Genetics, 2008, 178, 1237-1249.                                                         | 2.9 | 115       |
| 34 | Recruitment of <i>Saccharomyces cerevisiae</i> Dnl4–Lif1 Complex to a Double-Strand Break Requires<br>Interactions With Yku80 and the Xrs2 FHA Domain. Genetics, 2008, 180, 1809-1819.                                       | 2.9 | 74        |
| 35 | Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. DNA Repair, 2007, 6, 1507-1516.                                                                                   | 2.8 | 55        |
| 36 | Nonhomologous end-joining: mechanisms, conservation and relationship to illegitimate recombination. Topics in Current Genetics, 2007, , 487-513.                                                                             | 0.7 | 7         |

THOMAS E WILSON

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mycobacteriophage Exploit NHEJ to Facilitate Genome Circularization. Molecular Cell, 2006, 23, 743-748.                                                                                                    | 9.7  | 45        |
| 38 | Nonhomologous End-Joining: Mechanisms, Conservation and Relationship to Illegitimate Recombination. , 2006, , 487-513.                                                                                     |      | 1         |
| 39 | Mutations of the Yku80 C Terminus and Xrs2 FHA Domain Specifically Block Yeast Nonhomologous End<br>Joining. Molecular and Cellular Biology, 2005, 25, 10782-10790.                                        | 2.3  | 70        |
| 40 | Rejoining of DNA Double-Strand Breaks as a Function of Overhang Length. Molecular and Cellular<br>Biology, 2005, 25, 896-906.                                                                              | 2.3  | 98        |
| 41 | Abrogation of the Chk1-Pds1 Checkpoint Leads to Tolerance of Persistent Single-Strand Breaks in Saccharomyces cerevisiae. Genetics, 2005, 169, 1833-1844.                                                  | 2.9  | 9         |
| 42 | DNA Joint Dependence of Pol X Family Polymerase Action in Nonhomologous End Joining. Journal of<br>Biological Chemistry, 2005, 280, 29030-29037.                                                           | 3.4  | 95        |
| 43 | Nonhomologous End Joining in Yeast. Annual Review of Genetics, 2005, 39, 431-451.                                                                                                                          | 7.6  | 353       |
| 44 | Mycobacterial Ku and Ligase Proteins Constitute a Two-Component NHEJ Repair Machine. Science, 2004,<br>306, 683-685.                                                                                       | 12.6 | 193       |
| 45 | Non-homologous end-joining: bacteria join the chromosome breakdance. Trends in Biochemical<br>Sciences, 2003, 28, 62-66.                                                                                   | 7.5  | 65        |
| 46 | The Role of Yeast DNA 3′-Phosphatase Tpp1 and Rad1/Rad10 Endonuclease in Processing Spontaneous and<br>Induced Base Lesions. Journal of Biological Chemistry, 2003, 278, 31434-31443.                      | 3.4  | 38        |
| 47 | Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13669-13674. | 7.1  | 203       |
| 48 | Enhancement of <i>Saccharomyces cerevisiae</i> End-Joining Efficiency by Cell Growth Stage but Not<br>by Impairment of Recombination. Genetics, 2002, 161, 1015-1027.                                      | 2.9  | 94        |
| 49 | A Genomics-Based Screen for Yeast Mutants With an Altered Recombination/End-Joining Repair Ratio.<br>Genetics, 2002, 162, 677-688.                                                                         | 2.9  | 53        |
| 50 | Repair of DNA Strand Breaks by the Overlapping Functions of Lesion-Specific and Non-Lesion-Specific DNA 3′ Phosphatases. Molecular and Cellular Biology, 2001, 21, 7191-7198.                              | 2.3  | 80        |
| 51 | Uncoupling of 3′-Phosphatase and 5′-Kinase Functions in Budding Yeast. Journal of Biological<br>Chemistry, 2001, 276, 15073-15081.                                                                         | 3.4  | 55        |
| 52 | Efficient Processing of DNA Ends during Yeast Nonhomologous End Joining. Journal of Biological<br>Chemistry, 1999, 274, 23599-23609.                                                                       | 3.4  | 187       |
| 53 | Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells.<br>Nature, 1997, 388, 492-495.                                                                            | 27.8 | 586       |
| 54 | Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 1997, 388, 495-498.                                                                                                                   | 27.8 | 381       |

| #  | Article                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Participation of Non-Zinc Finger Residues in DNA Binding by Two Nuclear Orphan Receptors. Science, 1992, 256, 107-110. | 12.6 | 325       |