Aletta Bonn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388921/publications.pdf

Version: 2024-02-01

66250 75989 6,923 105 44 78 citations h-index g-index papers 123 123 123 10049 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants People Planet, 2022, 4, 110-121.	1.6	11
2	Balancing ecological and social goals in PES design – Single objective strategies are not sufficient. Ecosystem Services, 2022, 53, 101385.	2.3	9
3	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
4	Potential supply and actual use of cultural ecosystem services in mountain protected areas and their surroundings. Ecosystem Services, 2022, 53, 101395.	2.3	17
5	Conceptualizing ecosystem services using social–ecological networks. Trends in Ecology and Evolution, 2022, 37, 211-222.	4.2	32
6	Sustainable protected areas: Synergies between biodiversity conservation and socioeconomic development. People and Nature, 2022, 4, 893-903.	1.7	8
7	Flying insect biomass is negatively associated with urban cover in surrounding landscapes. Diversity and Distributions, 2022, 28, 1242-1254.	1.9	5
8	Temporal trends in the spatial bias of species occurrence records. Ecography, 2022, 2022, .	2.1	18
9	Functional traits influence patterns in vegetative and reproductive plant phenology – a multiâ€botanical garden study. New Phytologist, 2022, 235, 2199-2210.	3 . 5	13
10	Decision-making of citizen scientists when recording species observations. Scientific Reports, 2022, 12,	1.6	11
11	Addressing behavior in pollinator conservation policies to combat the implementation gap. Conservation Biology, 2021, 35, 610-622.	2.4	24
12	The importance of species diversity for human well-being in Europe. Ecological Economics, 2021, 181, 106917.	2.9	88
13	Widespread decline in Central European plant diversity across six decades. Global Change Biology, 2021, 27, 1097-1110.	4.2	48
14	The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834.	1.7	23
15	Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling and Software, 2021, 138, 104982.	1.9	64
16	Biodiversity and Health in the Urban Environment. Current Environmental Health Reports, 2021, 8, 146-156.	3.2	52
17	A checklist for using Beals' index with incomplete floristic monitoring data. Diversity and Distributions, 2021, 27, 1328-1333.	1.9	1
18	Pathways linking biodiversity to human health: A conceptual framework. Environment International, 2021, 150, 106420.	4.8	210

#	Article	IF	Citations
19	Urban green space soundscapes and their perceived restorativeness. People and Nature, 2021, 3, 756-769.	1.7	46
20	Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Diversity and Distributions, 2021, 27, 1353-1366.	1.9	29
21	Species richness is positively related to mental health – A study for Germany. Landscape and Urban Planning, 2021, 211, 104084.	3.4	54
22	Effects of large herbivores on fire regimes and wildfire mitigation. Journal of Applied Ecology, 2021, 58, 2690-2702.	1.9	43
23	Motivation and support services in citizen science insect monitoring: A cross-country study. Biological Conservation, 2021, 263, 109325.	1.9	12
24	Moderately common plants show highest relative losses. Conservation Letters, 2020, 13, e12674.	2.8	21
25	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	3.6	62
26	Quantifying interregional flows of multiple ecosystem services $\hat{a} \in \text{``A}$ case study for Germany. Global Environmental Change, 2020, 61, 102051.	3.6	54
27	Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature, 2020, 2, 305-316.	1.7	259
28	Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends. Diversity and Distributions, 2020, 26, 782-794.	1.9	15
29	Conservation goals in international policies. , 2020, , 241-262.		1
30	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	1.2	33
31	Urban street tree biodiversity and antidepressant prescriptions. Scientific Reports, 2020, 10, 22445.	1.6	96
32	Non-material contributions of wildlife to human well-being: a systematic review. Environmental Research Letters, 2020, 15, 093005.	2.2	39
33	Citizen science and marine conservation: a global review. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190461.	1.8	75
34	A greener path for the EU Common Agricultural Policy. Science, 2019, 365, 449-451.	6.0	258
35	Ten tips for developing interdisciplinary socio-ecological researchers. Socio-Ecological Practice Research, 2019, 1, 149-161.	0.9	85
36	Global Developments: Policy Support for Linking Biodiversity, Health and Climate Change. , 2019, , 315-328.		1

#	Article	IF	Citations
37	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	1.4	95
38	Atlas of Ecosystem Services. , 2019, , .		28
39	The Ecosystem Service Concept: Linking Ecosystems and Human Wellbeing. , 2019, , 7-11.		6
40	Ecosystem services tradeoffs arising from non-native tree plantation expansion in southern Chile. Landscape and Urban Planning, 2019, 190, 103589.	3.4	21
41	Guidance for assessing interregional ecosystem service flows. Ecological Indicators, 2019, 105, 92-106.	2.6	57
42	Social license through citizen science: a tool for marine conservation. Ecology and Society, 2019, 24, .	1.0	34
43	Using Semistructured Surveys to Improve Citizen Science Data for Monitoring Biodiversity. BioScience, 2019, 69, 170-179.	2.2	130
44	BiodiversitÃtsmonitoring in Deutschland: Wie Wissenschaft, Politik und Zivilgesellschaft ein nationales Monitoring unterstützen können. Gaia, 2019, 28, 265-270.	0.3	5
45	Recognizing the quiet extinction of invertebrates. Nature Communications, 2019, 10, 50.	5.8	180
46	Biodiversity and Health in the Face of Climate Change., 2019,,.		82
47	Biodiversity and Health in the Face of Climate Change: Challenges, Opportunities and Evidence Gaps. , 2019, , 1 -13.		6
48	Ecosystem Services: Understanding Drivers, Opportunities, and Risks to Move Towards Sustainable Land Management and Governance., 2019,, 401-403.		5
49	How Does Policy Conceptualise Citizen Science? A Qualitative Content Analysis of International Policy Documents. Citizen Science: Theory and Practice, 2019, 4, 32.	0.6	39
50	Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosystem Services, 2018, 31, 231-241.	2.3	143
51	Response to Kabisch and Colleagues. BioScience, 2018, 68, 167-168.	2.2	O
52	One hundred priority questions for landscape restoration in Europe. Biological Conservation, 2018, 221, 198-208.	1.9	58
53	The social fabric of citizen science—drivers for long-term engagement in the German butterfly monitoring scheme. Journal of Insect Conservation, 2018, 22, 731-743.	0.8	16
54	The threefold potential of environmental citizen science - Generating knowledge, creating learning opportunities and enabling civic participation. Biological Conservation, 2018, 225, 176-186.	1.9	137

#	Article	IF	Citations
55	Innovation in Citizen Science – Perspectives on Science-Policy Advances. Citizen Science: Theory and Practice, 2018, 3, 4.	0.6	56
56	Ecosystem services of allotment and community gardens: A Leipzig, Germany case study. Urban Forestry and Urban Greening, 2017, 23, 44-53.	2.3	101
57	Restoration planning to guide Aichi targets in a megadiverse country. Conservation Biology, 2017, 31, 1086-1097.	2.4	56
58	Synergies and trade-offs between nature conservation and climate policy: Insights from the "Natural Capital Germany – TEEB DE―study. Ecosystem Services, 2017, 24, 187-199.	2.3	25
59	Integrating ecosystem services and disservices: insights from plant invasions. Ecosystem Services, 2017, 23, 94-107.	2.3	179
60	Citizen science for assessing ecosystem services: Status, challenges and opportunities. Ecosystem Services, 2017, 28, 80-94.	2.3	55
61	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	2.2	114
62	Operationalizing Network Theory for Ecosystem Service Assessments. Trends in Ecology and Evolution, 2017, 32, 118-130.	4.2	103
63	Towards a <i>National Ecosystem Assessment</i> in Germany: A Plea for a Comprehensive Approach. Gaia, 2017, 26, 27-33.	0.3	8
64	Nature-Based Solutions to Climate Change Adaptation in Urban Areasâ€"Linkages Between Science, Policy and Practice. Theory and Practice of Urban Sustainability Transitions, 2017, , 1-11.	1.9	34
65	Urban Gardens as Multifunctional Nature-Based Solutions for Societal Goals in a Changing Climate. Theory and Practice of Urban Sustainability Transitions, 2017, , 237-253.	1.9	12
66	Nature-Based Solutions for Societal Goals Under Climate Change in Urban Areas – Synthesis and Ways Forward. Theory and Practice of Urban Sustainability Transitions, 2017, , 323-336.	1.9	14
67	$ ilde{A}$ –kosystembasierte Klimapolitik f $ ilde{A}$ ½r Deutschland. , 2017, , 237-260.		3
68	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
69	Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 2016, 21, .	1.0	753
70	Valuing peatland ecosystem services. , 2016, , 314-338.		6
71	Peatland restoration and ecosystem services: an introduction. , 2016, , 1-16.		14
72	National Ecosystem Assessments in Europe: A Review. BioScience, 2016, 66, 813-828.	2.2	94

#	Article	IF	CITATIONS
73	Learning and the transformative potential of citizen science. Conservation Biology, 2016, 30, 990-999.	2.4	135
74	Peatland restoration and ecosystem services: nature-based solutions for societal goals. , 2016, , 402-417.		9
75	Towards a national set of ecosystem service indicators: Insights from Germany. Ecological Indicators, 2016, 61, 38-48.	2.6	72
76	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
77	The alignment of agricultural and nature conservation policies in the European Union. Conservation Biology, 2015, 29, 996-1005.	2.4	99
78	A 5-year study of the impact of peatland revegetation upon DOC concentrations. Journal of Hydrology, 2014, 519, 3578-3590.	2.3	6
79	Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: Linking process understanding to ecosystem service valuation. Ecosystem Services, 2014, 9, 5-19.	2.3	72
80	Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosystem Services, 2014, 9, 54-65.	2.3	98
81	Improving the link between payments and the provision of ecosystem services in agri-environment schemes. Ecosystem Services, 2014, 9, 44-53.	2.3	91
82	Restoration effects on water table depths and CO2 fluxes from climatically marginal blanket bog. Biogeochemistry, 2014, 118, 159-176.	1.7	26
83	Participatory scenario development for environmental management: A methodological framework illustrated with experience from the UK uplands. Journal of Environmental Management, 2013, 128, 345-362.	3.8	166
84	Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services. Ecology and Society, $2013,18,.$	1.0	70
85	Carbon fluxes from eroding peatlands – the carbon benefit of revegetation following wildfire. Earth Surface Processes and Landforms, 2011, 36, 1487-1498.	1.2	40
86	Random Forest characterization of upland vegetation and management burning from aerial imagery. Journal of Biogeography, 2010, 37, 37-46.	1.4	40
87	Can carbon offsetting pay for upland ecological restoration?. Science of the Total Environment, 2009, 408, 26-36.	3.9	42
88	Modelling the coupled dynamics of moorland management and upland vegetation. Journal of Applied Ecology, 2009, 46, 278-288.	1.9	28
89	Using scenarios to explore UK upland futures. Futures, 2009, 41, 619-630.	1.4	29
90	The future of the uplands. Land Use Policy, 2009, 26, S204-S216.	2.5	80

#	Article	IF	Citations
91	Environmental change in moorland landscapes. Earth-Science Reviews, 2007, 82, 75-100.	4.0	229
92	The ecological effectiveness of protected areas: The United Kingdom. Biological Conservation, 2006, 132, 76-87.	1.9	164
93	Using stakeholder and social network analysis to support participatory processes. International Journal of Biodiversity Science and Management, 2006, 2, 249-252.	0.7	16
94	Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodiversity and Conservation, 2005, 14, 1083-1100.	1.2	127
95	Structure of the species–energy relationship. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1685-1691.	1.2	107
96	Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale?. Ecology Letters, 2002, 5, 733-741.	3.0	143
97	The significance of flood regimes for carabid beetle and spider communities in riparian habitats?a comparison of three major rivers in Germany. River Research and Applications, 2002, 18, 43-64.	0.7	86
98	Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest. Ecography, 2001, 24, 470-482.	2.1	24
99	Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography, 2001, 24, 483-496.	2.1	18
100	Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest. Ecography, 2001, 24, 470-482.	2.1	97
101	Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography, 2001, 24, 483-496.	2.1	69
102	Increased fluctuating asymmetry in the damselfly Coenagrion puella is correlated with ectoparasitic water mites: implications for fluctuating asymmetry theory. Oecologia, 1996, 108, 596-598.	0.9	59
103	Peatland conservation at the science–practice interface. , 0, , 358-374.		1
104	Modelling the Heterogeneity within Citizen Science Data for Biodiversity Research. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
105	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30