Ottavio Arancio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/638880/publications.pdf

Version: 2024-02-01

173 papers

22,219 citations

72 h-index 145 g-index

190 all docs 190 docs citations

times ranked

190

25203 citing authors

#	Article	IF	CITATIONS
1	Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science, 2003, 301, 805-809.	6.0	3,912
2	ABAD Directly Links AÂ to Mitochondrial Toxicity in Alzheimer's Disease. Science, 2004, 304, 448-452.	6.0	1,181
3	Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron, 2014, 83, 1131-1143.	3.8	863
4	Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nature Medicine, 2008, 14, 1097-1105.	15.2	833
5	Picomolar Amyloid- \hat{l}^2 Positively Modulates Synaptic Plasticity and Memory in Hippocampus. Journal of Neuroscience, 2008, 28, 14537-14545.	1.7	627
6	Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nature Medicine, 2019, 25, 165-175.	15.2	511
7	Learning and Memory and Synaptic Plasticity Are Impaired in a Mouse Model of Rett Syndrome. Journal of Neuroscience, 2006, 26, 319-327.	1.7	493
8	Amyloid Â-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13217-13221.	3.3	486
9	Ubiquitin Hydrolase Uch-L1 Rescues \hat{I}^2 -Amyloid-Induced Decreases in Synaptic Function and Contextual Memory. Cell, 2006, 126, 775-788.	13.5	385
10	Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. Journal of Clinical Investigation, 2004, 114, 1624-1634.	3.9	379
11	Nitric Oxide Acts Directly in the Presynaptic Neuron to Produce Long-Term Potentiationin Cultured Hippocampal Neurons. Cell, 1996, 87, 1025-1035.	13.5	372
12	Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Annals of Neurology, 2004, 55, 801-814.	2.8	338
13	RAGE potentiates $\hat{Al^2}$ -induced perturbation of neuronal function in transgenic mice. EMBO Journal, 2004, 23, 4096-4105.	3 . 5	311
14	Phosphodiesterase 5 Inhibition Improves Synaptic Function, Memory, and Amyloid-Â Load in an Alzheimer's Disease Mouse Model. Journal of Neuroscience, 2009, 29, 8075-8086.	1.7	275
15	Dysregulation of Histone Acetylation in the APP/PS1 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 131-139.	1.2	255
16	Chapter 11 Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Progress in Brain Research, 1998, 118, 155-172.	0.9	249
17	Endogenous amyloidâ $\widehat{\mathfrak{el}}^2$ is necessary for hippocampal synaptic plasticity and memory. Annals of Neurology, 2011, 69, 819-830.	2.8	248
18	ABAD enhances Aβâ€induced cell stress via mitochondrial dysfunction. FASEB Journal, 2005, 19, 1-25.	0.2	238

#	Article	IF	CITATIONS
19	Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and $\hat{Al^2}$ accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7327-7332.	3.3	230
20	Amyloid-Â Peptide Inhibits Activation of the Nitric Oxide/cGMP/cAMP-Responsive Element-Binding Protein Pathway during Hippocampal Synaptic Plasticity. Journal of Neuroscience, 2005, 25, 6887-6897.	1.7	220
21	Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16877-16882.	3.3	220
22	A Neuronal Microtubule-Interacting Agent, NAPVSIPQ, Reduces Tau Pathology and Enhances Cognitive Function in a Mouse Model of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 146-153.	1.3	214
23	Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. Journal of Clinical Investigation, 2008, 118, 2796-2807.	3.9	192
24	Receptor for Advanced Glycation End Product-Dependent Activation of p38 Mitogen-Activated Protein Kinase Contributes to Amyloid- \hat{l}^2 -Mediated Cortical Synaptic Dysfunction. Journal of Neuroscience, 2008, 28, 3521-3530.	1.7	189
25	î±-Synuclein produces a long-lasting increase in neurotransmitter release. EMBO Journal, 2004, 23, 4506-4516.	3.5	176
26	Oligomeric amyloid- \hat{l}^2 peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nature Neuroscience, 2008, 11, 547-554.	7.1	176
27	Neurotrophins, synaptic plasticity and dementia. Current Opinion in Neurobiology, 2007, 17, 325-330.	2.0	171
28	Inhibition of Amyloid- \hat{l}^2 (A \hat{l}^2) Peptide-Binding Alcohol Dehydrogenase-A \hat{l}^2 Interaction Reduces A \hat{l}^2 Accumulation and Improves Mitochondrial Function in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 2313-2320.	1.7	170
29	Rodent models for Alzheimer's disease drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 703-711.	2.5	170
30	A GluR1-cGKII Interaction Regulates AMPA Receptor Trafficking. Neuron, 2007, 56, 670-688.	3.8	166
31	FoxO1 Target Gpr17 Activates AgRP Neurons to Regulate Food Intake. Cell, 2012, 149, 1314-1326.	13.5	164
32	Presynaptic Role of cGMP-Dependent Protein Kinase during Long-Lasting Potentiation. Journal of Neuroscience, 2001, 21, 143-149.	1.7	162
33	Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9415-9420.	3.3	157
34	Phospholipase D2 Ablation Ameliorates Alzheimer's Disease-Linked Synaptic Dysfunction and Cognitive Deficits. Journal of Neuroscience, 2010, 30, 16419-16428.	1.7	155
35	Mitochondrial dysfunction and mitophagy defect triggered by heterozygous <i>GBA</i> mutations. Autophagy, 2019, 15, 113-130.	4. 3	155
36	Rapid Increase in Clusters of Presynaptic Proteins at Onset of Long-Lasting Potentiation. Science, 2001, 294, 1547-1550.	6.0	152

#	Article	IF	Citations
37	RAGE: A Potential Target for Aβ-Mediated Cellular Perturbation in Alzheimers Disease. Current Molecular Medicine, 2007, 7, 735-742.	0.6	151
38	Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity. PLoS ONE, 2014, 9, e111899.	1.1	151
39	Behavioral assays with mouse models of Alzheimer's disease: Practical considerations and guidelines. Biochemical Pharmacology, 2014, 88, 450-467.	2.0	151
40	Characterization and Molecular Profiling of PSEN1 Familial Alzheimer's Disease iPSC-Derived Neural Progenitors. PLoS ONE, 2014, 9, e84547.	1.1	148
41	BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nature Neuroscience, 2006, 9, 1009-1018.	7.1	132
42	Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction. Cell, 2012, 150, 1055-1067.	13.5	132
43	β―but not γâ€secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia. EMBO Molecular Medicine, 2012, 4, 171-179.	3.3	130
44	Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathologica, 2017, 134, 749-767.	3.9	130
45	Calpain Mediates Calcium-Induced Activation of the Erk1,2 MAPK Pathway and Cytoskeletal Phosphorylation in Neurons. American Journal of Pathology, 2004, 165, 795-805.	1.9	125
46	LTP and memory impairment caused by extracellular $\hat{Al^2}$ and Tau oligomers is APP-dependent. ELife, 2017, 6,	2.8	121
47	Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits. PLoS ONE, 2014, 9, e111898.	1.1	120
48	Synaptic Therapy in Alzheimer's Disease: A CREB-centric Approach. Neurotherapeutics, 2015, 12, 29-41.	2.1	117
49	Presynaptic CaMKII Is Necessary for Synaptic Plasticity in Cultured Hippocampal Neurons. Neuron, 2004, 42, 129-141.	3.8	113
50	Small Molecule, Non-Peptide p75NTR Ligands Inhibit $\hat{A^2}$ -Induced Neurodegeneration and Synaptic Impairment. PLoS ONE, 2008, 3, e3604.	1.1	112
51	The Specific Role of cGMP in Hippocampal LTP. Learning and Memory, 1998, 5, 231-245.	0.5	112
52	A small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer's mouse model. Neurobiology of Aging, 2013, 34, 2052-2063.	1.5	104
53	A Time Course Analysis of the Electrophysiological Properties of Neurons Differentiated from Human Induced Pluripotent Stem Cells (iPSCs). PLoS ONE, 2014, 9, e103418.	1.1	103
54	CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons. Acta Neuropathologica Communications, 2017, 5, 77.	2.4	102

#	Article	IF	CITATIONS
55	Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. Journal of Alzheimer's Disease, 2018, 64, S611-S631.	1.2	102
56	Microglial Receptor for Advanced Glycation End Product-Dependent Signal Pathway Drives β-Amyloid-Induced Synaptic Depression and Long-Term Depression Impairment in Entorhinal Cortex. Journal of Neuroscience, 2010, 30, 11414-11425.	1.7	101
57	Acute ethanol suppresses glutamatergic neurotransmission through endocannabinoids in hippocampal neurons. Journal of Neurochemistry, 2008, 107, 1001-1013.	2.1	99
58	Synthesis of quinoline derivatives: Discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2013, 60, 285-294.	2.6	96
59	Involvement of p38 MAPK in Synaptic Function and Dysfunction. International Journal of Molecular Sciences, 2020, 21, 5624.	1.8	96
60	A role for tau in learning, memory and synaptic plasticity. Scientific Reports, 2018, 8, 3184.	1.6	95
61	A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Disease, 2008, 31, 46-57.	2.1	92
62	Amyloid-Î ² Peptide: Dr. Jekyll or Mr. Hyde?. Journal of Alzheimer's Disease, 2012, 33, S111-S120.	1.2	91
63	Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant?. Biochemical Journal, 2012, 446, 165-177.	1.7	89
64	Mitophagy Failure in Fibroblasts and iPSC-Derived Neurons of Alzheimer's Disease-Associated Presenilin 1 Mutation. Frontiers in Molecular Neuroscience, 2017, 10, 291.	1.4	86
65	Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nature Communications, 2013, 4, 1939.	5 . 8	84
66	Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer's disease. Scientific Reports, 2014, 4, 7190.	1.6	84
67	SUMO and Alzheimer's Disease. NeuroMolecular Medicine, 2013, 15, 720-736.	1.8	82
68	Reduced gliotransmitter release from astrocytes mediates tauâ€induced synaptic dysfunction in cultured hippocampal neurons. Glia, 2017, 65, 1302-1316.	2.5	82
69	Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatric Disease and Treatment, 2008, 4, 371.	1.0	80
70	Receptor protein tyrosine phosphatase \hat{A} is essential for hippocampal neuronal migration and long-term potentiation. EMBO Journal, 2003, 22, 4121-4131.	3.5	77
71	Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia. Neuropsychopharmacology, 2009, 34, 2305-2322.	2.8	76
72	Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiology of Aging, 2014, 35, 520-531.	1.5	75

#	Article	IF	CITATIONS
73	Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer's Disease Mouse Models. ACS Chemical Neuroscience, 2015, 6, 666-680.	1.7	75
74	Furoxans (1,2,5-Oxadiazole- <i>N</i> -Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents. Journal of Medicinal Chemistry, 2012, 55, 3076-3087.	2.9	74
75	Endocannabinoid System: Emerging Role from Neurodevelopment to Neurodegeneration. Mini-Reviews in Medicinal Chemistry, 2009, 9, 448-462.	1.1	71
76	Neuromodulatory Action of Picomolar Extracellular AÎ ² 42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. Journal of Neuroscience, 2019, 39, 5986-6000.	1.7	71
77	$\hat{A^2}$ 1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy, 2014, 10, 1827-1843.	4.3	70
78	Increased neuronal PreP activity reduces $\hat{Al^2}$ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Human Molecular Genetics, 2015, 24, 5198-5210.	1.4	70
79	Reduction of Synaptojanin 1 Ameliorates Synaptic and Behavioral Impairments in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 15271-15276.	1.7	69
80	Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer's disease. Scientific Reports, 2017, 7, 46320.	1.6	63
81	Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20822-20827.	3.3	62
82	RAGE mediates \hat{A}^2 accumulation in a mouse model of Alzheimerâ \in TM s disease via modulation of \hat{I}^2 - and \hat{I}^3 -secretase activity. Human Molecular Genetics, 2018, 27, 1002-1014.	1.4	62
83	Calpain Inhibitors, a Treatment for Alzheimer's Disease: Position Paper. Journal of Molecular Neuroscience, 2003, 20, 357-362.	1.1	61
84	SUMO1 Affects Synaptic Function, Spine Density and Memory. Scientific Reports, 2015, 5, 10730.	1.6	61
85	MAPK, \hat{I}^2 -amyloid and synaptic dysfunction: the role of RAGE. Expert Review of Neurotherapeutics, 2009, 9, 1635-1645.	1.4	60
86	Picomolar Amyloid- \hat{l}^2 Peptides Enhance Spontaneous Astrocyte Calcium Transients. Journal of Alzheimer's Disease, 2013, 38, 49-62.	1.2	59
87	Amyloid- \hat{l}^2 Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory. Journal of Neuroscience, 2017, 37, 6926-6937.	1.7	59
88	Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Molecular Neurodegeneration, 2019, 14, 26.	4.4	59
89	Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction. PLoS ONE, 2013, 8, e66226.	1.1	58
90	The effect of amyloid- \hat{l}^2 peptide on synaptic plasticity and memory is influenced by different isoforms, concentrations, and aggregation status. Neurobiology of Aging, 2018, 71, 51-60.	1.5	55

#	Article	IF	CITATIONS
91	Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer's disease. Scientific Reports, 2016, 6, 32553.	1.6	54
92	Calpain inhibitors. Journal of Molecular Neuroscience, 2002, 19, 135-141.	1.1	53
93	Memory Deficits Due to Familial British Dementia <i>BRI2</i> Mutation Are Caused by Loss of <i>BRI2</i> Function Rather than Amyloidosis. Journal of Neuroscience, 2010, 30, 14915-14924.	1.7	52
94	Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochemical Pharmacology, 2020, 176, 113818.	2.0	52
95	EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathogens, 2018, 14, e1007061.	2.1	51
96	$\hat{A^{2}}$ -Dependent Inhibition of LTP in Different Intracortical Circuits of the Visual Cortex: The Role of RAGE. Journal of Alzheimer's Disease, 2009, 17, 59-68.	1.2	50
97	APP heterozygosity averts memory deficit in knockin mice expressing the Danish dementia BRI2 mutant. EMBO Journal, 2011, 30, 2501-2509.	3.5	49
98	Time Course and Size of Blood–Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1202-1211.	1.7	49
99	PP2A methylation controls sensitivity and resistance to \hat{l}^2 -amyloidâ \in "induced cognitive and electrophysiological impairments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3347-3352.	3.3	48
100	RAGE Inhibition in Microglia Prevents Ischemia-Dependent Synaptic Dysfunction in an Amyloid-Enriched Environment. Journal of Neuroscience, 2014, 34, 8749-8760.	1.7	47
101	Identification of a Novel 1,2,3,4-Tetrahydrobenzo[<i>b</i>][1,6]naphthyridine Analogue as a Potent Phosphodiesterase 5 Inhibitor with Improved Aqueous Solubility for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2017, 60, 8858-8875.	2.9	47
102	Involvement of the Nitric Oxide Pathway in Synaptic Dysfunction Following Amyloid Elevation in Alzheimer's Disease. Reviews in the Neurosciences, 2006, 17, 497-523.	1.4	46
103	Preparation of Oligomeric & Dipocampal Slices. Journal of Visualized Experiments, 2010, , .	0.2	45
104	Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. Scientific Reports, 2014, 4, 6352.	1.6	41
105	PDE5 Exists in Human Neurons and is a Viable Therapeutic Target for Neurologic Disease. Journal of Alzheimer's Disease, 2016, 52, 295-302.	1.2	40
106	Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca ²⁺ -permeable AMPA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3122-3127.	3.3	39
107	Protection against \hat{l}^2 -amyloid induced abnormal synaptic function and cell death by Ginkgolide J. Neurobiology of Aging, 2009, 30, 257-265.	1.5	38
108	The ARMS/Kidins220 scaffold protein modulates synaptic transmission. Molecular and Cellular Neurosciences, 2010, 45, 92-100.	1.0	35

#	Article	IF	CITATIONS
109	Tau is not necessary for amyloid-l̂²â€"induced synaptic and memory impairments. Journal of Clinical Investigation, 2020, 130, 4831-4844.	3.9	34
110	A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons. Experimental Neurology, 2011, 229, 409-420.	2.0	32
111	A novel mechanism for cyclic adenosine monophosphate–mediated memory formation: Role of amyloid beta. Annals of Neurology, 2014, 75, 602-607.	2.8	32
112	A Reliable Way to Detect Endogenous Murine β-Amyloid. PLoS ONE, 2013, 8, e55647.	1.1	32
113	Dynamin 1 Is Required for Memory Formation. PLoS ONE, 2014, 9, e91954.	1.1	32
114	Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer's disease. Brain, 2022, 145, 2849-2868.	3.7	32
115	?-Synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. European Journal of Neuroscience, 2007, 25, 3583-3596.	1.2	31
116	New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment. European Journal of Medicinal Chemistry, 2016, 124, 82-102.	2.6	31
117	A Selective and Brain Penetrant p38î±MAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction. Journal of Medicinal Chemistry, 2019, 62, 5298-5311.	2.9	31
118	Stem Cell Therapy for Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2020, 1266, 39-55.	0.8	30
119	Translational inhibition of APP by Posiphen: Efficacy, pharmacodynamics, and pharmacokinetics in the APP/PS1 mouse. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 37-45.	1.8	29
120	Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides. Frontiers in Aging Neuroscience, 2017, 9, 435.	1.7	29
121	Oligomers of & Digomers of warp;#946;-Amyloid Peptide Inhibit BDNF-Induced Arc Expression in Cultured Cortical Neurons. Current Alzheimer Research, 2007, 4, 518-521.	0.7	27
122	Design, Synthesis, and Optimization of Novel Epoxide Incorporating Peptidomimetics as Selective Calpain Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6054-6068.	2.9	27
123	Glut4 expression defines an insulin-sensitive hypothalamic neuronal population. Molecular Metabolism, 2014, 3, 452-459.	3.0	27
124	Betaâ€amyloid 1â€42 monomers, but not oligomers, produce <scp>PHF</scp> â€like conformation of Tau protein. Aging Cell, 2016, 15, 914-923.	3.0	27
125	A multifunctional therapeutic approach to disease modification in multiple familial mouse models and a novel sporadic model of Alzheimer's disease. Molecular Neurodegeneration, 2016, 11, 35.	4.4	27
126	Sub-efficacious doses of phosphodiesterase 4 and 5 inhibitors improve memory in a mouse model of Alzheimer's disease. Neuropharmacology, 2018, 138, 151-159.	2.0	27

#	Article	IF	CITATIONS
127	Isolation and characterization of "Reprotoxinâ€, a novel protein complex from Daboia russelii snake venom. Biochimie, 2008, 90, 1545-1559.	1.3	26
128	Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy. Journal of Medicinal Chemistry, 2012, 55, 6784-6801.	2.9	26
129	Efficient Expression of HIV in Immunocompetent Mouse Brain Reveals a Novel Nonneurotoxic Viral Function in Hippocampal Synaptodendritic Injury and Memory Impairment. MBio, 2019, 10, .	1.8	26
130	Novel Selective Calpain 1 Inhibitors as Potential Therapeutics in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 49, 707-721.	1.2	24
131	Synaptic Fatigue is More Pronounced in the APP/PS1 Transgenic Mouse Model of Alzheimers Disease. Current Alzheimer Research, 2005, 2, 137-140.	0.7	23
132	Fibrillar β-Amyloid Impairs the Late Phase of Long Term Potentiation. Current Alzheimer Research, 2006, 3, 179-183.	0.7	22
133	An Intracellular Threonine of Amyloid- \hat{l}^2 Precursor Protein Mediates Synaptic Plasticity Deficits and Memory Loss. PLoS ONE, 2013, 8, e57120.	1.1	22
134	SUMO1 impact on Alzheimer disease pathology in an amyloid-depositing mouse model. Neurobiology of Disease, 2018, 110, 154-165.	2.1	21
135	Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology. Progress in Neurobiology, 2021, 206, 102154.	2.8	21
136	Early presynaptic changes during plasticity in cultured hippocampal neurons. EMBO Journal, 2006, 25, 4361-4371.	3.5	19
137	Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection. Molecular Neurodegeneration, 2012, 7, 60.	4.4	19
138	Synaptic underpinnings of altered hippocampal function in glutaminaseâ€deficient mice during maturation. Hippocampus, 2012, 22, 1027-1039.	0.9	19
139	Commentary: Analysis of SUMO1-conjugation at synapses. Frontiers in Cellular Neuroscience, 2017, 11, 345.	1.8	19
140	Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Annals of Clinical and Translational Neurology, 2018, 5, 240-251.	1.7	19
141	An isoform-selective p38α mitogen-activated protein kinase inhibitor rescues early entorhinal cortex dysfunctions in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2018, 70, 86-91.	1.5	19
142	Cell Cultures From Animal Models of Alzheimer's Disease as a Tool for Faster Screening and Testing of Drug Efficacy. Journal of Molecular Neuroscience, 2004, 24, 015-022.	1.1	18
143	The Ankyrin Repeat-rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Is Regulated by Activity-dependent Calpain Proteolysis and Modulates Synaptic Plasticity. Journal of Biological Chemistry, 2010, 285, 40472-40478.	1.6	18
144	5-HT4 Receptor Stimulation Leads to Soluble AÎ ² PPα Production Through MMP-9 Upregulation. Journal of Alzheimer's Disease, 2012, 32, 437-445.	1.2	18

#	Article	IF	Citations
145	The schizophrenia susceptibility gene DTNBP1 modulates AMPAR synaptic transmission and plasticity in the hippocampus of juvenile DBA/2J mice. Molecular and Cellular Neurosciences, 2014, 58, 76-84.	1.0	18
146	Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron, 2014, 83, 1482.	3.8	17
147	Characterization of a subpopulation of developing cortical interneurons from human iPSCs within serum-free embryoid bodies. American Journal of Physiology - Cell Physiology, 2015, 308, C209-C219.	2.1	17
148	Usefulness of behavioral and electrophysiological studies in transgenic models of Alzheimer's disease. Neurochemical Research, 2003, 28, 1009-1015.	1.6	16
149	A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity. Channels, 2008, 2, 230-232.	1.5	16
150	Dual Mechanism of Toxicity for Extracellular Injection of Tau Oligomers versus Monomers in Human Tau Mice. Journal of Alzheimer's Disease, 2017, 59, 743-751.	1.2	16
151	Creation and characterization of BAC-transgenic mice with physiological overexpression of epitope-tagged RCAN1 (DSCR1). Mammalian Genome, 2013, 24, 30-43.	1.0	15
152	Fibrillatory activity and other membrane changes in partially denervated muscles. Muscle and Nerve, 1989, 12, 149-153.	1.0	14
153	The penalty of stress ―Epichaperomes negatively reshaping the brain in neurodegenerative disorders. Journal of Neurochemistry, 2021, 159, 958-979.	2.1	14
154	Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. BMC Neuroscience, 2015, 16, 67.	0.8	12
155	Connectivity and circuitry in a dish versus in a brain. Alzheimer's Research and Therapy, 2015, 7, 44.	3.0	11
156	SUMO modulation of protein aggregation and degradation. AIMS Molecular Science, 2015, 2, 382-410.	0.3	11
157	PIP2: a new key player in Alzheimer's disease. Cellscience, 2008, 5, 44-47.	0.3	11
158	Eicosanoyl-5-hydroxytryptamide (EHT) prevents Alzheimer's disease-related cognitive and electrophysiological impairments in mice exposed to elevated concentrations of oligomeric beta-amyloid. PLoS ONE, 2017, 12, e0189413.	1.1	10
159	Electrophysiological Profiles of Induced Neurons Converted Directly from Adult Human Fibroblasts Indicate Incomplete Neuronal Conversion. Cellular Reprogramming, 2014, 16, 439-446.	0.5	8
160	Molecular Mechanisms of Learning and Memory**The authors declare no competing financial interests, 2016, , 1-27.		7
161	Extracellular tau oligomers affect extracellular glutamate handling by astrocytes through downregulation of GLT†expression and impairment of NKA1A2 function. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	7
162	What Does the APP Family Do in the Brain?. Neuron, 2020, 108, 583-585.	3.8	6

#	Article	IF	CITATIONS
163	Reduced Expression of the PP2A Methylesterase, PME-1, or the PP2A Methyltransferase, LCMT-1, Alters Sensitivity to Beta-Amyloid-Induced Cognitive and Electrophysiological Impairments in Mice. Journal of Neuroscience, 2020, 40, 4596-4608.	1.7	4
164	Leucine Carboxyl Methyltransferase 1 Overexpression Protects Against Cognitive and Electrophysiological Impairments in Tg2576 APP Transgenic Mice. Journal of Alzheimer's Disease, 2021, 79, 1813-1829.	1.2	4
165	Estimation of the Mean from Sums with Unknown Numbers of Summands. Biometrics, 2006, 62, 918-920.	0.8	3
166	Strategy for Overcoming Crebbp and EP300 Mutations in Lymphoma: Development of First-in-Class HAT Activators. Blood, 2019, 134, 4068-4068.	0.6	3
167	Transitory l-carnitine depletion in rat skeletal muscle by d-carnitine. Pharmacological Research, 1989, 21, 163-168.	3.1	2
168	Preparation of Tau Oligomers After the Protein Extraction from Bacteria and Brain Cortices. Methods in Molecular Biology, 2018, 1779, 85-97.	0.4	2
169	Development of First-in-Class Histone Acetyltransferase (HAT) Activators for Precision Targeting of Epigenetic Derangements in Lymphoma. Blood, 2018, 132, 37-37.	0.6	2
170	A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity. BMC Pharmacology, 2009, 9, S44.	0.4	1
171	Targeting the NO/cGMP/CREB Phosphorylation Signaling Pathway in Alzheimer's Disease. , 2019, , .		1
172	Involvement of SUMO1 in Alzheimer's disease pathology. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-P-042.	0.0	0
173	Histone Acetyltransferase (HAT) Activator, YF2, Modulates the p53:BCL6 Axis and Antigen Presentation in Diffuse Large B-Cell Lymphomas. Blood, 2021, 138, 2254-2254.	0.6	O