Raghukanth Stg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388605/publications.pdf

Version: 2024-02-01

88 papers

1,246 citations

393982 19 h-index 433756 31 g-index

89 all docs 89 docs citations

89 times ranked

708 citing authors

#	Article	IF	Citations
1	Probabilistic Fling Hazard Map of India and Adjoined Regions. Journal of Earthquake Engineering, 2022, 26, 4712-4736.	1.4	2
2	Non-linear Principal Component Analysis of Response Spectra. Journal of Earthquake Engineering, 2022, 26, 2148-2167.	1.4	2
3	Broadband ground motion simulations for Northeast India. Soil Dynamics and Earthquake Engineering, 2022, 154, 107120.	1.9	2
4	Fourier amplitude spectrum prediction and generation of synthetic ground motion to New Zealand. Acta Geophysica, 2022, 70, 39.	1.0	4
5	Hybrid Broadband Ground Motion Simulation for 2015 Mw 7.9 Nepal Earthquake. Journal of Earthquake and Tsunami, 2022, 16, .	0.7	1
6	Generation of a Response Spectrum from a Fourier Spectrum Using a Recurrent Neural Network: Application to New Zealand. Pure and Applied Geophysics, 2022, 179, 2797-2816.	0.8	4
7	3D Crustal Velocity Model for Ground Motion Simulations in North-East India. Journal of Earthquake Engineering, 2021, 25, 475-511.	1.4	1
8	A hybrid genetic algorithm-neural network model for power spectral density compatible ground motion prediction. Soil Dynamics and Earthquake Engineering, 2021, 142, 106528.	1.9	5
9	Translational and rotational ground motion simulations in homogeneous reduced micropolar half-space. Journal of Seismology, 2021, 25, 599-623.	0.6	3
10	Hybrid broadband ground motion simulations in the Indo-Gangetic basin for great Himalayan earthquake scenarios. Bulletin of Earthquake Engineering, 2021, 19, 3319-3348.	2.3	6
11	Prediction of Ground Motion Intensity Measures Using an Artificial Neural Network. Pure and Applied Geophysics, 2021, 178, 2025-2058.	0.8	10
12	Influence of Himalayan topography on earthquake ground motions. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
13	Ground motion intensity measures for New Zealand. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928.	1.9	8
14	Seismic Wave Propagation Through Layered Reduced Micropolar Medium. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020931.	1.4	2
15	Broadband Ground Motion in Indo-Gangetic Basin for Hypothetical Earthquakes in Himalaya. Lecture Notes in Civil Engineering, 2021, , 351-365.	0.3	0
16	3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations. Soil Dynamics and Earthquake Engineering, 2020, 129, 105923.	1.9	21
17	Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake. Natural Hazards, 2020, 104, 279-304.	1.6	1
18	The Longâ€Lived and Recent Seismicity at the Lunar Orientale Basin: Evidence From Morphology and Formation Ages of Boulder Avalanches, Tectonics, and Seismic Ground Motion. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006553.	1.5	12

#	Article	IF	CITATIONS
19	A non-stationary random field model for earthquake slip. Journal of Seismology, 2020, 24, 423-441.	0.6	4
20	Neural network-based hybrid ground motion prediction equations for Western Himalayas and North-Eastern India. Acta Geophysica, 2020, 68, 303-324.	1.0	18
21	Seismic Vulnerability Assessment of Sri Kedarnath Temple in India. RILEM Bookseries, 2019, , 983-991.	0.2	2
22	The Seismically Active Lobate Scarps and Coseismic Lunar Boulder Avalanches Triggered by 3 January 1975 (<i>M</i> < _{<i>W</i>} 4.1) Shallow Moonquake. Geophysical Research Letters, 2019, 46, 7972-7981.	1.5	20
23	Fundamental Solutions to Static and Dynamic Loads for Homogeneous Reduced Micropolar Half-Space. Pure and Applied Geophysics, 2019, 176, 4881-4905.	0.8	4
24	A non-Gaussian random field model for earthquake slip. Journal of Seismology, 2019, 23, 889-912.	0.6	8
25	Rating damage potential of ground motion records. Earthquake Engineering and Engineering Vibration, 2019, 18, 233-254.	1.1	5
26	Characterization of Strong Motion Generation Regions of Earthquake Slip Using Extreme Value Theory. Pure and Applied Geophysics, 2019, 176, 3567.	0.8	3
27	Stochastic earthquake source model for ground motion simulation. Earthquake Engineering and Engineering Vibration, 2019, 18, 1-34.	1.1	9
28	Rating of Indian ground motion records. Natural Hazards, 2019, 96, 53-95.	1.6	4
29	Ground motion prediction equations for higher order parameters. Soil Dynamics and Earthquake Engineering, 2019, 118, 98-110.	1.9	10
30	Recent seismicity in Valles Marineris, Mars: Insights from young faults, landslides, boulder falls and possible mud volcanoes. Earth and Planetary Science Letters, 2019, 505, 51-64.	1.8	36
31	Seismic Response of the Central Part of Indo-Gangetic Plain. Journal of Earthquake Engineering, 2019, 23, 183-207.	1.4	13
32	Ground Motion Parameters for the 2011 Great Japan Tohoku Earthquake. Journal of Earthquake Engineering, 2019, 23, 688-723.	1.4	9
33	Ground Motion Prediction Model Using Artificial Neural Network. Pure and Applied Geophysics, 2018, 175, 1035-1064.	0.8	62
34	An XFEM Model for Seismic Activity in Indian Plate. Journal of Earthquake Engineering, 2018, 22, 942-969.	1.4	2
35	Stochastic Source Model for Strong Motion Prediction. International Journal of Geotechnical Earthquake Engineering, 2018, 9, 1-22.	0.3	1
36	Ground Motion Simulation for Earthquakes in Sumatran Region. Current Science, 2018, 114, 1709.	0.4	3

#	Article	IF	CITATIONS
37	Finite element models to represent seismic activity of the Indian plate. Geoscience Frontiers, 2017, 8, 81-91.	4.3	5
38	Ground motion estimation during 25th April 2015 Nepal earthquake. Acta Geodaetica Et Geophysica, 2017, 52, 69-93.	0.7	27
39	Simulation of strong ground motion for a MW 8.5 hypothetical earthquake in central seismic gap region, Himalaya. Bulletin of Earthquake Engineering, 2017, 15, 4039-4065.	2.3	12
40	Forecasting of Global Earthquake Energy Time Series. Advances in Data Science and Adaptive Analysis, 2017, 09, 1750008.	0.2	1
41	Probabilistic Fling Hazard Map for Himalayan Region. , 2017, , .		1
42	Estimation of Strong Ground Motion in Southern Peninsular India by Empirical Green's Function Method. Current Science, 2017, 112, 2273.	0.4	0
43	Site-specific Probabilistic Seismic Hazard Map of Himachal Pradesh, India. Part II. Hazard Estimation. Acta Geophysica, 2016, 64, 853-884.	1.0	23
44	Site-specific Probabilistic Seismic Hazard Map of Himachal Pradesh, India. Part I. Site-specific Ground Motion Relations. Acta Geophysica, 2016, 64, 336-361.	1.0	13
45	Intra Plate Stresses Using Finite Element Modelling. Acta Geophysica, 2016, 64, 1370-1390.	1.0	4
46	Regional level forecasting of seismic energy release. Acta Geodaetica Et Geophysica, 2016, 51, 359-391.	0.7	3
47	Seismic response of reduced micropolar elastic half-space. Journal of Seismology, 2016, 20, 787-801.	0.6	9
48	Reply to Wu "Comment on Regional level Forecasting of Seismic energy release by Kavitha and Raghukanth― Acta Geodaetica Et Geophysica, 2016, 51, 777-779.	0.7	0
49	Regional ground motion simulation around Delhi due to future large earthquake. Natural Hazards, 2016, 82, 1479-1513.	1.6	9
50	A stochastic model for earthquake slip distribution of large events. Geomatics, Natural Hazards and Risk, 2016, 7, 493-521.	2.0	12
51	Estimation of Seismic Site Coefficient and Seismic Microzonation of Imphal City, India, Using the Probabilistic Approach. Acta Geophysica, 2015, 63, 1339-1367.	1.0	8
52	An engineering model for seismicity of India. Geomatics, Natural Hazards and Risk, 2015, 6, 1-20.	2.0	6
53	Seismic ground motion in micropolar elastic half-space. Applied Mathematical Modelling, 2015, 39, 7244-7265.	2.2	7
54	Maximum Possible Ground Motion for Linear Structures. Journal of Earthquake Engineering, 2015, 19, 938-955.	1.4	2

#	Article	lF	CITATIONS
55	Development of Surface Level Probabilistic Seismic Hazard Map of Himachal Pradesh., 2015,, 765-778.		2
56	Estimating fractal dimension of lineaments using box counting method for the Indian landmass. Geocarto International, 2014, 29, 314-331.	1.7	10
57	Ground Motion Relations for Active Regions in India. Pure and Applied Geophysics, 2014, 171, 2241-2275.	0.8	34
58	Stochastic Finite Fault Modeling of Subduction Zone Earthquakes in Northeastern India. Pure and Applied Geophysics, 2013, 170, 1705-1727.	0.8	9
59	Regional level ground motion simulation for a hypothetical great earthquake in the Garwhal Himalaya. Geomatics, Natural Hazards and Risk, 2013, 4, 202-225.	2.0	4
60	EMPIRICAL MODE DECOMPOSITION OF EARTHQUAKE ACCELEROGRAMS. Advances in Adaptive Data Analysis, 2012, 04, 1250022.	0.6	8
61	Probabilistic seismic hazard estimation of Manipur, India. Journal of Geophysics and Engineering, 2012, 9, 516-533.	0.7	24
62	Estimation of ground motion during the 18th September 2011 Sikkim Earthquake. Geomatics, Natural Hazards and Risk, 2012, 3, 9-34.	2.0	13
63	Evaluation of liquefaction potential of Guwahati: Gateway city to Northeastern India. Natural Hazards, 2012, 63, 449-460.	1.6	24
64	Ground Motion Simulation for January 26, 2001 Gujarat Earthquake by Spectral Finite Element Method. Journal of Earthquake Engineering, 2012, 16, 252-273.	1.4	4
65	Liquefaction Hazard Scenario of Imphal City for 1869 Cachar and a Hypothetical Earthquake. International Journal of Geotechnical Earthquake Engineering, 2012, 3, 34-56.	0.3	4
66	Ground motion for scenario earthquakes at Guwahati city. Acta Geodaetica Et Geophysica Hungarica, 2011, 46, 326-346.	0.4	20
67	Seismicity parameters for important urban agglomerations in India. Bulletin of Earthquake Engineering, 2011, 9, 1361-1386.	2.3	26
68	Evaluation of seismic soil-liquefaction at Guwahati city. Environmental Earth Sciences, 2010, 61, 355-368.	1.3	28
69	Deterministic seismic scenarios for North East India. Journal of Seismology, 2010, 14, 143-167.	0.6	30
70	INTRINSIC MODE FUNCTIONS OF EARTHQUAKE SLIP DISTRIBUTION. Advances in Adaptive Data Analysis, 2010, 02, 193-215.	0.6	11
71	FORECASTING THE AIR TRAFFIC FOR NORTH-EAST INDIAN CITIES. Advances in Adaptive Data Analysis, 2010, 02, 81-96.	0.6	6
72	Estimation of Seismicity Parameters for India. Seismological Research Letters, 2010, 81, 207-217.	0.8	26

#	Article	IF	Citations
73	Surface level ground motion estimation for 1869 Cachar earthquake (<i>M_w</i> 7.5) at Imphal city. Journal of Geophysics and Engineering, 2010, 7, 321-331.	0.7	5
74	Reply to "Comment on 'Estimation of Seismicity Parameters for India' by S. T. G. Raghukanth" by S. K. Nath and K. K. S. Thingbaijam. Seismological Research Letters, 2010, 81, 1004-1005.	0.8	0
75	Deterministic Seismic Scenarios for Imphal City. Pure and Applied Geophysics, 2009, 166, 641-672.	0.8	10
76	Engineering source model for strong ground motion. Soil Dynamics and Earthquake Engineering, 2009, 29, 483-503.	1.9	3
77	Modeling of Strong-Motion Data in Northeastern India: Q, Stress Drop, and Site Amplification. Bulletin of the Seismological Society of America, 2009, 99, 705-725.	1.1	56
78	Ground motion estimation during the Kashmir earthquake of 8th October 2005. Natural Hazards, 2008, 46, 1-13.	1.6	21
79	Simulation of Strong Ground Motion During the 1950 Great Assam Earthquake. Pure and Applied Geophysics, 2008, 165, 1761-1787.	0.8	15
80	Modeling and synthesis of strong ground motion. Journal of Earth System Science, 2008, 117, 683-705.	0.6	8
81	Source mechanism model for ground motion simulation. Applied Mathematical Modelling, 2008, 32, 1417-1435.	2.2	10
82	Ground motion estimation at Guwahati city for an Mw 8.1 earthquake in the Shillong plateau. Tectonophysics, 2008, 448, 98-114.	0.9	42
83	Subgrade modulus of geocell-reinforced sand foundations. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2008, 161, 79-87.	0.7	22
84	Estimation of seismic spectral acceleration in Peninsular India. Journal of Earth System Science, 2007, 116, 199-214.	0.6	165
85	Strong Ground Motion Estimation During the Kutch, India Earthquake. Pure and Applied Geophysics, 2006, 163, 153-173.	0.8	22
86	Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall. Meteorology and Atmospheric Physics, 2005, 90, 17-36.	0.9	59
87	Attenuation of Strong Ground Motion in Peninsular India. Seismological Research Letters, 2004, 75, 530-540.	0.8	82
88	Seismic recurrence parameters for India and adjoined regions. Journal of Seismology, 0, , .	0.6	2