Jacqueline Anne Wilce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388340/publications.pdf

Version: 2024-02-01

85 papers 3,060 citations

28 h-index 52 g-index

88 all docs 88 docs citations

88 times ranked 5201 citing authors

#	Article	IF	CITATIONS
1	Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes and Infections, 2020, 9, 601-604.	3.0	508
2	Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3472-3477.	3.3	180
3	Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Research, 2001, 29, 1852-1863.	6.5	151
4	Novel Binding of HuR and Poly(C)-binding Protein to a Conserved UC-rich Motif within the 3′-Untranslated Region of the Androgen Receptor Messenger RNA. Journal of Biological Chemistry, 2002, 277, 27183-27192.	1.6	123
5	SLIRP, a Small SRA Binding Protein, Is a Nuclear Receptor Corepressor. Molecular Cell, 2006, 22, 657-668.	4.5	118
6	Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis. Cell Reports, 2017, 19, 919-927.	2.9	98
7	Supramolecular Selfâ€Assembly of <i>N</i> à€Acetylâ€Capped βâ€Peptides Leads to Nano―to Macroscale Fiber Formation. Angewandte Chemie - International Edition, 2013, 52, 8266-8270.	7.2	71
8	Elucidation of a C-Rich Signature Motif in Target mRNAs of RNA-Binding Protein TIAR. Molecular and Cellular Biology, 2007, 27, 6806-6817.	1.1	70
9	RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. PLoS Genetics, 2013, 9, e1003628.	1.5	68
10	A functional comparison of the venom of three Australian jellyfishâ€"Chironex fleckeri, Chiropsalmus sp., and Carybdea xaymacanaâ€"on cytosolic Ca2+, haemolysis and Artemia sp. lethality. Toxicon, 2005, 45, 233-242.	0.8	66
11	Jellyfish envenoming syndromes: unknown toxic mechanisms and unproven therapies. Medical Journal of Australia, 2003, 178, 34-37.	0.8	62
12	Sequence requirements for RNA binding by HuR and AUF1. Journal of Biochemistry, 2012, 151, 423-437.	0.9	60
13	Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Research, 2011, 39, 1117-1130.	6.5	59
14	Targeting large molecules to mitochondria. Advanced Drug Delivery Reviews, 2001, 49, 189-198.	6.6	58
15	The androgen receptor mRNA. BioEssays, 2004, 26, 672-682.	1.2	58
16	Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5534-5539.	3.3	58
17	RNA Recognition and Stress Granule Formation by TIA Proteins. International Journal of Molecular Sciences, 2014, 15, 23377-23388.	1.8	58
18	Crystal Structures of the Substrate Free-enzyme, and Reaction Intermediate of the HAD Superfamily Member, Haloacid Dehalogenase DehIVa from Burkholderia cepacia MBA4. Journal of Molecular Biology, 2007, 368, 706-717.	2.0	49

#	Article	IF	Citations
19	The Crystal Structure of Dehl Reveals a New α-Haloacid Dehalogenase Fold and Active-Site Mechanism. Journal of Molecular Biology, 2008, 378, 284-294.	2.0	48
20	Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Structural Biology, 2007, 7, 58.	2.3	47
21	TDP-43 and FUS–structural insights into RNA recognition and self-association. Current Opinion in Structural Biology, 2019, 59, 134-142.	2.6	41
22	Role of Interfacial Hydrophobic Residues in the Stabilization of the Leucine Zipper Structures of the Transcription Factors c-Fos and c-Jun. Journal of Biological Chemistry, 2002, 277, 23-31.	1.6	39
23	pH-Dependent Changes in the in Vitro Ligand-Binding Properties and Structure of Human Clusterin. Biochemistry, 2000, 39, 1411-1419.	1.2	38
24	Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Letters, 2003, 555, 425-430.	1.3	37
25	Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides. Nucleic Acids Research, 2012, 40, 5101-5114.	6.5	37
26	Structure of the RTP-DNA complex and the mechanism of polar replication fork arrest. Nature Structural Biology, 2001, 8, 206-210.	9.7	36
27	Venom as a source of useful biologically active molecules. Emergency Medicine (Fremantle, W A), 2001, 13, 28-36.	0.0	35
28	Structural characterization of <i>Staphylococcus aureus</i> biotin protein ligase and interaction partners: An antibiotic target. Protein Science, 2013, 22, 762-773.	3.1	32
29	Structure and RNA binding of the third KH domain of poly(C)-binding protein 1. Nucleic Acids Research, 2005, 33, 1213-1221.	6.5	30
30	Grb7-SH2 domain dimerisation is affected by a single point mutation. European Biophysics Journal, 2005, 34, 454-460.	1.2	29
31	A Molecular Switch Governs the Interaction between the Human Complement Protease C1s and Its Substrate, Complement C4. Journal of Biological Chemistry, 2013, 288, 15821-15829.	1.6	29
32	Synthesis of Stapled Î ² 3-Peptides through Ring-Closing Metathesis. Organic Letters, 2009, 11, 4438-4440.	2.4	28
33	Tandem RNA binding sites induce self-association of the stress granule marker protein TIA-1. Nucleic Acids Research, 2021, 49, 2403-2417.	6.5	27
34	Site-directed mutants of RTP of Bacillus subtilis and the mechanism of replication fork arrest 1 1Edited by M. Gottesman. Journal of Molecular Biology, 1999, 286, 1325-1335.	2.0	26
35	Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR. Cellular Signalling, 2013, 25, 2485-2495.	1.7	26
36	Distinct binding properties of TIAR RRMs and linker region. RNA Biology, 2013, 10, 579-589.	1.5	25

#	Article	IF	CITATIONS
37	Context-dependent role of Grb7 in HER2+ve and triple-negative breast cancer cell lines. Breast Cancer Research and Treatment, 2014, 143, 593-603.	1.1	25
38	Structural Basis of Binding by Cyclic Nonphosphorylated Peptide Antagonists of Grb7 Implicated in Breast Cancer Progression. Journal of Molecular Biology, 2011, 412, 397-411.	2.0	24
39	Discovery, Development, and Cellular Delivery of Potent and Selective Bicyclic Peptide Inhibitors of Grb7 Cancer Target. Journal of Medicinal Chemistry, 2017, 60, 9349-9359.	2.9	24
40	Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly. Nucleic Acids Research, 2013, 41, 3436-3445.	6.5	23
41	Toxins not neutralized by brown snake antivenom. Toxicology and Applied Pharmacology, 2006, 213, 117-125.	1.3	21
42	Benzopyrazine derivatives: A novel class of growth factor receptor bound protein 7 antagonists. Bioorganic and Medicinal Chemistry, 2011, 19, 693-701.	1.4	21
43	Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide. ACS Omega, 2017, 2, 670-677.	1.6	21
44	Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Scientific Reports, 2016, 6, 27060.	1.6	20
45	Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target. Journal of Medicinal Chemistry, 2015, 58, 7707-7718.	2.9	19
46	Cooperative interplay of let-7 mimic and HuR with <i>MYC</i> RNA. Cell Cycle, 2015, 14, 2729-2733.	1.3	18
47	TIA-1 RRM23 binding and recognition of target oligonucleotides. Nucleic Acids Research, 2017, 45, 4944-4957.	6.5	18
48	Structure of the PCBP2/stem–loop IV complex underlying translation initiation mediated by the poliovirus type I IRES. Nucleic Acids Research, 2020, 48, 8006-8021.	6.5	18
49	Uptake of a cell permeable G7â€18NATE construct into cells and binding with the Grb7â€SH2 domain. Biopolymers, 2011, 96, 181-188.	1.2	17
50	The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain. RNA Biology, 2014, 11, 766-776.	1.5	16
51	NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers, 2007, 88, 174-181.	1.2	15
52	Conformational stability studies of a stapled hexa- \hat{l}^2 3-peptide library. Organic and Biomolecular Chemistry, 2012, 10, 1802.	1.5	15
53	Interaction of the nonâ€phosphorylated peptide G7â€18NATE with Grb7â€6H2 domain requires phosphate for enhanced affinity and specificity. Journal of Molecular Recognition, 2012, 25, 57-67.	1.1	14
54	Use of SPR to Study the Interaction of G7-18NATE Peptide with the Grb7-SH2 Domain. International Journal of Peptide Research and Therapeutics, 2010, 16, 177-184.	0.9	13

#	Article	IF	Citations
55	An Asymmetric Structure of the Bacillus subtilis Replication Terminator Protein in Complex with DNA. Journal of Molecular Biology, 2007, 370, 481-491.	2.0	12
56	Design and testing of bicyclic inhibitors of Grb7-are two cycles better than one?. Biopolymers, 2013, 100, 543-549.	1.2	12
57	Synthesis of an Analog of the Thyroid Hormone-binding Protein Transthyretin via Regioselective Chemical Ligation. Journal of Biological Chemistry, 2001, 276, 25997-26003.	1.6	11
58	The impact of single cysteine residue mutations on the replication terminator protein. Biochemical and Biophysical Research Communications, 2003, 310, 1096-1103.	1.0	10
59	The Discovery of Phenylbenzamide Derivatives as Grb7â€Based Antitumor Agents. ChemMedChem, 2013, 8, 280-288.	1.6	10
60	The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1841-1849.	1.4	10
61	1H-NMR structural studies of a cystine-linked peptide containing residues 71-93 of transthyretin and effects of a Ser84 substitution implicated in familial amyloidotic polyneuropathy. FEBS Journal, 1999, 262, 586-594.	0.2	9
62	Assessment of the Robustness of a Serendipitous Zinc Binding Fold: Mutagenesis and Protein Grafting. Structure, 2005, 13, 257-266.	1.6	9
63	The intracellular and nuclearâ€targeted delivery of an antiandrogen drug by carrier peptides. Biopolymers, 2008, 90, 595-603.	1.2	9
64	RNA-Binding Proteins That Target the Androgen Receptor mRNA. IUBMB Life, 2002, 54, 345-349.	1.5	8
65	Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target. Frontiers in Molecular Biosciences, 2017, 4, 64.	1.6	8
66	Oligonucleotide Binding Proteins. Advances in Experimental Medicine and Biology, 2012, 747, 91-104.	0.8	7
67	Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules, 2019, 24, 3739.	1.7	7
68	Identification of PLA2 and α-Neurotoxin Proteins in the Venom of Pseudonaja affinis (Dugite). Toxicology and Applied Pharmacology, 2002, 181, 184-191.	1.3	6
69	Preparation and crystallization of the Grb7 SH2 domain in complex with the G7-18NATE nonphosphorylated cyclic inhibitor peptide. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1640-1643.	0.7	6
70	Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Research, 2018, 46, 3169-3186.	6.5	6
71	Direct Interaction between Calmodulin and the Grb7 RA-PH Domain. International Journal of Molecular Sciences, 2020, 21, 1336.	1.8	5
72	Regulation of TIA-1 Condensates: Zn2+ and RGG Motifs Promote Nucleic Acid Driven LLPS and Inhibit Irreversible Aggregation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5

#	Article	lF	CITATIONS
73	Formation of an αCP1-KH3 complex with UC-rich RNA. European Biophysics Journal, 2005, 34, 423-429.	1.2	4
74	Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2005, 335, 361-366.	1.0	4
75	Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 182-186.	0.4	4
76	Preparation and cellular uptake of bicyclicâ€peptide cargo clicked to cell penetrating peptides. Peptide Science, 2018, 110, e24037.	1.0	4
77	Synthesis and Structural Analysis of the N-Terminal Domain of the Thyroid Hormone-Binding Protein Transthyretin. Clinical Chemistry and Laboratory Medicine, 2002, 40, 1221-8.	1.4	3
78	Partners of wild type Grb7 and a mutant lacking its calmodulin-binding domain. Archives of Biochemistry and Biophysics, 2020, 687, 108386.	1,4	3
79	Enhancing the Bioactivity of Bicyclic Peptides Targeted to Grb7-SH2 by Restoring Cell Permeability. Biomedicines, 2022, 10, 1145.	1.4	2
80	Crystallization and preliminary X-ray diffraction analysis of theBacillus subtilisreplication termination protein in complex with the 37-base-pair Terl-binding site. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1104-1107.	0.7	1
81	Purification, crystallization and preliminary crystallographic analysis of Dehl, a group I α-haloacid dehalogenase fromPseudomonas putidastrain PP3. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 596-598.	0.7	1
82	Mutation and crystallization of the first KH domain of human polycytosine-binding protein 1 (PCBP1) in complex with DNA. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1257-1261.	0.7	1
83	Comparison between clickable cyclic TAT and penetratin for delivery of cyclic and bicyclicâ€peptide cargos. Peptide Science, 2020, 112, e24163.	1.0	1
84	Detailed protocol for optimised expression and purification of functional monomeric human Heat Shock Factor 1. Protein Expression and Purification, 2020, 176, 105722.	0.6	0
85	The Regulation of TIA†Binding to RNA by pH Conditions. FASEB Journal, 2015, 29, 711.5.	0.2	0