Igor Slivac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388273/publications.pdf

Version: 2024-02-01

1051969 889612 23 509 10 19 h-index citations g-index papers 23 23 23 1051 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Production and Use of Gesicles for Nucleic Acid Delivery. Molecular Biotechnology, 2022, 64, 278-292.	1.3	2
2	Bioactivity Comparison of Electrospun PCL Mats and Liver Extracellular Matrix as Scaffolds for HepG2 Cells. Polymers, 2021, $13,279$.	2.0	8
3	Protein Hydrolysates from Flaxseed Oil Cake as a Media Supplement in CHO Cell Culture. Resources, 2021, 10, 59.	1.6	6
4	Proizvodnja cjepiva protiv gripe - dosezi i izazovi. Hrvatski Äasopis Za Prehrambenu Tehnologiju Biotehnologiju I Nutricionizam, 2021, 15, .	0.2	0
5	Electrospinning of PCL/CEFUROXIM® fibrous scaffolds on 3D printed collectors. Journal of the Textile Institute, 2020, 111, 1288-1299.	1.0	6
6	Biological Potential of Flaxseed Protein Hydrolysates Obtained by Different Proteases. Plant Foods for Human Nutrition, 2020, 75, 518-524.	1.4	18
7	UÄinak proteina iz uljne pogaÄe lana na rast i produktivnost CHO-E i HEK-293T stanica. Hrvatski Äasopis Za Prehrambenu Tehnologiju Biotehnologiju I Nutricionizam, 2020, 14, 98-104.	0.2	O
8	Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells. Polymers, 2020, 12, 1758.	2.0	12
9	Study of the Properties and Cells Growth on Antibacterial Electrospun Polycaprolactone/Cefuroxime Scaffolds. Autex Research Journal, 2020, 20, 312-318.	0.6	2
10	Electrospun PCL/cefuroxime scaffolds with custom tailored topography. Journal of Experimental Nanoscience, 2019, 14, 41-55.	1.3	7
11	Hempseed protein hydrolysates' effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 2019, 46, 6079-6085.	1.0	28
12	Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products, 2018, 111, 579-589.	2.5	74
13	Toxicity mechanisms of ionic liquids. Arhiv Za Higijenu Rada I Toksikologiju, 2017, 68, 171-179.	0.4	84
14	Non-viral nucleic acid delivery methods. Expert Opinion on Biological Therapy, 2017, 17, 105-118.	1.4	59
15	Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents toward fish cell line. Ecotoxicology and Environmental Safety, 2016, 131, 30-36.	2.9	58
16	An omics approach to rational feed. Journal of Biotechnology, 2016, 234, 127-138.	1.9	23
17	Adaptation and cultivation of permanent fish cell line CCO in serum-free medium and influence of protein hydrolysates on growth performance. Cytotechnology, 2016, 68, 115-121.	0.7	14
18	Cytotoxic Effects of Imidazolium Ionic Liquids on Fish and Human Cell Lines. Arhiv Za Higijenu Rada I Toksikologiju, 2012, 63, 15-20.	0.4	40

#	Article	IF	CITATION
19	Stable Expression of Chimeric Heavy Chain Antibodies in CHO Cells. , 2012, 911, 287-303.		28
20	Comparison of Cytotoxicity Induced by 17α-Ethynylestradiol and Diethylstilbestrol in Fish CCO and Mammalian CHO-K1 Cell Lines. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 252-257.	1.3	6
21	Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth. Cytotechnology, 2010, 62, 585-594.	0.7	28
22	Effect of porcine brain growth factor on primary cell cultures and BHK-21 [C-13] cell line. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 28-31.	0.7	1
23	Growth characteristics of channel catfish ovary cells—influence of glucose and glutamine. Cytotechnology, 2008, 57, 273-278.	0.7	5