David Keays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388106/publications.pdf

Version: 2024-02-01

all docs

59 3,665 30 59 papers citations h-index g-index

65 65 65 5365

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Myths in magnetosensation. IScience, 2022, 25, 104454.	4.1	5
2	The expression, localisation and interactome of pigeon CRY2. Scientific Reports, 2021, 11, 20293.	3.3	6
3	Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
4	The biophysical, molecular, and anatomical landscape of pigeon CRY4: A candidate light-based quantal magnetosensor. Science Advances, 2020, 6, eabb9110.	10.3	50
5	Neuronal circuits and the magnetic sense: central questions. Journal of Experimental Biology, 2020, 223, .	1.7	3
6	A high sensitivity ZENK monoclonal antibody to map neuronal activity in Aves. Scientific Reports, 2020, 10, 915.	3.3	12
7	Why (and how) we should publish negative data. EMBO Reports, 2020, 21, e49775.	4.5	22
8	A proteomic survey of microtubule-associated proteins in a R402H TUBA1A mutant mouse. PLoS Genetics, 2020, 16, e1009104.	3.5	8
9	A Putative Mechanism for Magnetoreception by Electromagnetic Induction in the Pigeon Inner Ear. Current Biology, 2019, 29, 4052-4059.e4.	3.9	61
10	No evidence for a magnetite-based magnetoreceptor in the lagena of pigeons. Current Biology, 2019, 29, R14-R15.	3.9	18
11	Improved Genome Assembly and Annotation for the Rock Pigeon (<i>Columba livia</i>). G3: Genes, Genomes, Genetics, 2018, 8, 1391-1398.	1.8	62
12	Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nature Neuroscience, 2018, 21, 207-217.	14.8	30
13	Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron, 2018, 100, 1354-1368.e5.	8.1	35
14	Ectopic otoconial formation in the lagena of the pigeon inner ear. Biology Open, 2018, 7, .	1.2	2
15	Cryptochrome: The magnetosensor with a sinister side?. PLoS Biology, 2018, 16, e3000018.	5.6	14
16	Comment on "Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans". ELife, $2018, 7, .$	6.0	12
17	Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. Journal of the Royal Society Interface, 2018, 15, 20180124.	3.4	15
18	Brain-specific knockin of the pathogenic Tubb5 E401K allele causes defects in motor coordination and prepulse inhibition. Behavioural Brain Research, 2017, 323, 47-55.	2.2	6

#	Article	IF	CITATIONS
19	Is magnetogenetics the new optogenetics?. EMBO Journal, 2017, 36, 1643-1646.	7.8	56
20	Tubulins and brain development $\hat{a} \in \text{``The origins of functional specification. Molecular and Cellular Neurosciences, 2017, 84, 58-67.}$	2.2	67
21	Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance. ELife, 2017, 6, .	6.0	10
22	Magnetoreception—A sense without a receptor. PLoS Biology, 2017, 15, e2003234.	5.6	92
23	Deletions and de novo mutations of <i>SOX11</i> are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome. Journal of Medical Genetics, 2016, 53, 152-162.	3.2	69
24	Uner Tan syndrome caused by a homozygousTUBB2Bmutation affecting microtubule stability. Human Molecular Genetics, 2016, 26, ddw383.	2.9	11
25	Mutations in the HECT domain of NEDD4L lead to AKT–mTOR pathway deregulation and cause periventricular nodular heterotopia. Nature Genetics, 2016, 48, 1349-1358.	21.4	101
26	Activation of an exonic spliceâ€donor site in exon 30 of <i><scp>CDK</scp>5<scp>RAP</scp>2</i> in a patient with severe microcephaly and pigmentary abnormalities. Clinical Case Reports (discontinued), 2016, 4, 952-956.	0.5	8
27	Mutations in the murine homologue of TUBB5 cause microcephaly by perturbing cell cycle progression and inducing p53 associated apoptosis. Development (Cambridge), 2016, 143, 1126-33.	2.5	25
28	The expression of <i>tubb2b</i> undergoes a developmental transition in murine cortical neurons. Journal of Comparative Neurology, 2015, 523, 2161-2186.	1.6	23
29	Mutations in Either TUBB or MAPRE2 Cause Circumferential Skin Creases Kunze Type. American Journal of Human Genetics, 2015, 97, 790-800.	6.2	63
30	No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 262-267.	7.1	66
31	Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Human Molecular Genetics, 2015, 24, 3732-3741.	2.9	56
32	Mutations in (i>PIGY (/i>: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Human Molecular Genetics, 2015, 24, 6146-6159.	2.9	64
33	TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. Human Molecular Genetics, 2014, 23, 5147-5158.	2.9	32
34	Mutations in PGAP3 Impair GPI-Anchor Maturation, Causing a Subtype of Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2014, 94, 278-287.	6.2	88
35	Microtubules and Neurodevelopmental Disease: The Movers and the Makers. Advances in Experimental Medicine and Biology, 2014, 800, 75-96.	1.6	55
36	An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells. Current Biology, 2013, 23, 924-929.	3.9	41

#	Article	IF	Citations
37	Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene. Brain, 2013, 136, 3378-3394.	7.6	85
38	Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes. PLoS Genetics, 2013, 9, e1003094.	3.5	47
39	High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Communicative and Integrative Biology, 2013, 6, e24859.	1.4	24
40	Exome sequencing can detect pathogenic mosaic mutations present at low allele frequencies. Journal of Human Genetics, 2012, 57, 70-72.	2.3	58
41	Mutations in the \hat{I}^2 -Tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities. Cell Reports, 2012, 2, 1554-1562.	6.4	162
42	Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature, 2012, 484, 367-370.	27.8	150
43	Cytoarchitectural disruption of the superior colliculus and an enlarged acoustic startle response in the Tuba1a mutant mouse. Neuroscience, 2011, 195, 191-200.	2.3	6
44	Tuba8 Is Expressed at Low Levels in the Developing Mouse and Human Brain. American Journal of Human Genetics, 2010, 86, 819-822.	6.2	35
45	Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Human Molecular Genetics, 2010, 19, 3599-3613.	2.9	63
46	The Role of <i>Tubala </i> in Adult Hippocampal Neurogenesis and the Formation of the Dentate Gyrus. Developmental Neuroscience, 2010, 32, 268-277.	2.0	18
47	Mutations in the \hat{I}^2 -tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nature Genetics, 2009, 41, 746-752.	21.4	330
48	Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits. Current Biology, 2008, 18, 354-362.	3.9	304
49	Behavioural characterisation of the robotic mouse mutant. Behavioural Brain Research, 2007, 181, 239-247.	2.2	23
50	Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans. Cell, 2007, 128, 45-57.	28.9	397
51	Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (<i>TUBA1A</i>). Human Mutation, 2007, 28, 1055-1064.	2.5	213
52	Estimating the number of coding mutations in genotypic and phenotypic driven N-ethyl-N-nitrosourea (ENU) screens: revisited. Mammalian Genome, 2007, 18, 123-124.	2.2	30
53	Neuronal migration: unraveling the molecular pathway with humans, mice, and a fungus. Mammalian Genome, 2007, 18, 425-30.	2.2	14
54	Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon, 2006, 48, 810-829.	1.6	128

DAVID KEAYS

#	Article	IF	CITATIONS
55	Estimating the number of coding mutations in genotypic- and phenotypic-driven N-ethyl-N-nitrosourea (ENU) screens. Mammalian Genome, 2006, 17, 230-238.	2.2	57
56	A gene-driven ENU-based approach to generating an allelic series in any gene. Mammalian Genome, 2004, 15, 585-591.	2.2	148
57	Determining sequences and post-translational modifications of novel conotoxins inConus victoriae using cDNA sequencing and mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 548-557.	1.6	56
58	Treating drug-dependent patients in hospitals. Journal of Law & Medicine, 2002, 10, 109-17.	0.0	0
59	Genetic testing and insurance: When is discrimination justified?. Monash Bioethics Review, 2000, 19, S79-S88.	0.8	7