Aleksandr B Sahakyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6387912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nature Methods, 2016, 13, 841-844.	19.0	314
2	Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Research, 2019, 47, 3862-3874.	14.5	280
3	Machine learning model for sequence-driven DNA G-quadruplex formation. Scientific Reports, 2017, 7, 14535.	3.3	111
4	Structural Analysis using SHALiPE to Reveal RNA Gâ€Quadruplex Formation in Human Precursor MicroRNA. Angewandte Chemie - International Edition, 2016, 55, 8958-8961.	13.8	92
5	Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism. Proceedings of the United States of America, 2014, 111, 10203-10208.	7.1	68
6	Structure-based prediction of methyl chemical shifts in proteins. Journal of Biomolecular NMR, 2011, 50, 331-346.	2.8	65
7	G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nature Structural and Molecular Biology, 2017, 24, 243-247.	8.2	58
8	Selective Chemical Labeling of Natural T Modifications in DNA. Journal of the American Chemical Society, 2015, 137, 9270-9272.	13.7	56
9	Thermal and pH Stabilities of iâ€DNA: Confronting in vitro Experiments with Models and Inâ€Cell NMR Data. Angewandte Chemie - International Edition, 2021, 60, 10286-10294.	13.8	46
10	Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chemical Communications, 2018, 54, 10878-10881.	4.1	44
11	Analysis of the Contributions of Ring Current and Electric Field Effects to the Chemical Shifts of RNA Bases. Journal of Physical Chemistry B, 2013, 117, 1989-1998.	2.6	33
12	ALMOST: An all atom molecular simulation toolkit for protein structure determination. Journal of Computational Chemistry, 2014, 35, 1101-1105.	3.3	31
13	Long genes and genes with multiple splice variants are enriched in pathways linked to cancer and other multigenic diseases. BMC Genomics, 2016, 17, 225.	2.8	28
14	Using Sideâ€Chain Aromatic Proton Chemical Shifts for a Quantitative Analysis of Protein Structures. Angewandte Chemie - International Edition, 2011, 50, 9620-9623.	13.8	20
15	A Conformational Ensemble Derived Using NMR Methyl Chemical Shifts Reveals a Mechanical Clamping Transition That Gates the Binding of the HU Protein to DNA. Journal of the American Chemical Society, 2014, 136, 2204-2207.	13.7	20
16	Structural Analysis using SHALiPE to Reveal RNA Gâ€Quadruplex Formation in Human Precursor MicroRNA. Angewandte Chemie, 2016, 128, 9104-9107.	2.0	13
17	Electric Field Effects on One-Bond Indirect Spinâ^'Spin Coupling Constants and Possible Biomolecular Perspectives. Journal of Physical Chemistry A, 2008, 112, 3576-3586.	2.5	12
18	A geometrical parametrization of C1′-C5′ RNA ribose chemical shifts calculated by density functional theory. Journal of Chemical Physics, 2013, 139, 034101.	3.0	12

Aleksandr B Sahakyan

#	Article	IF	CITATIONS
19	Dielectric permittivity and temperature effects on spin–spin couplings studied on acetonitrile. Magnetic Resonance in Chemistry, 2008, 46, 63-68.	1.9	10
20	Single genome retrieval of context-dependent variability in mutation rates for human germline. BMC Genomics, 2017, 18, 81.	2.8	8
21	Assessment of solvent effects: do weak alignment media affect the structure of the solute?. Magnetic Resonance in Chemistry, 2007, 45, 557-563.	1.9	7
22	Correlation of 1JCH spin–spin coupling constants and their solvent sensitivities. Chemical Physics Letters, 2012, 542, 56-61.	2.6	7
23	Computational studies of dielectric permittivity effects on chemical shifts of alanine dipeptide. Chemical Physics Letters, 2012, 547, 66-72.	2.6	6
24	Protein Structure Validation Using Side-Chain Chemical Shifts. Journal of Physical Chemistry B, 2012, 116, 4754-4759.	2.6	5
25	Revealing the specific solute–solvent interactions via the measurements of the NMR spin–spin coupling constants. Journal of Molecular Structure, 2015, 1083, 175-178.	3.6	4
26	Torsion sensitivity in NMR of aligned molecules: study on various substituted biphenyls. Magnetic Resonance in Chemistry, 2008, 46, 144-149.	1.9	3
27	A Spontaneous Ringâ€Opening Reaction Leads to a Repairâ€Resistant Thymine Oxidation Product in Genomic DNA. ChemBioChem, 2020, 21, 320-323.	2.6	0
28	Thermal and pH Stabilities of iâ€DNA: Confronting in vitro Experiments with Models and Inâ€Cell NMR Data. Angewandte Chemie, 2021, 133, 10374-10382.	2.0	0