

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6387664/publications.pdf Version: 2024-02-01

		430754	360920
39	1,271	18	35
papers	citations	h-index	g-index
39	39	39	2038
all docs	docs citations	times ranked	citing authors

\\/_____

#	Article	IF	CITATIONS
1	Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacologica Sinica, 2022, 43, 240-250.	2.8	7
2	Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of <i>FGF16</i> in a familial atrial septal defect. Cardiovascular Research, 2022, 118, 859-871.	1.8	15
3	Cardiomyocyte Maturation–the Road is not Obstructed. Stem Cell Reviews and Reports, 2022, 18, 2966-2981.	1.7	2
4	The updated view on induced pluripotent stem cells for cardiovascular precision medicine. Pflugers Archiv European Journal of Physiology, 2021, 473, 1137-1149.	1.3	3
5	Establishment and characterization of a human embryonic stem cell line carrying a heterozygous GATA4T280M mutation. Stem Cell Research, 2021, 53, 102393.	0.3	0
6	CXADRâ€like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 13775-13788.	1.6	15
7	Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics, 2020, 10, 9686-9701.	4.6	24
8	Human embryonic stem cell-derived cardiomyocyte therapy in mouse permanent ischemia and ischemia-reperfusion models. Stem Cell Research and Therapy, 2019, 10, 167.	2.4	23
9	MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. Journal of Molecular and Cellular Cardiology, 2019, 134, 1-12.	0.9	13
10	Genome-Wide Association and Functional Studies Identify <i>SCML4</i> and <i>THSD7A</i> as Novel Susceptibility Genes for Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 964-975.	1.1	32
11	Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Research and Therapy, 2018, 9, 56.	2.4	61
12	Prostaglandin-Endoperoxide Synthase 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility. Endocrinology, 2018, 159, 490-505.	1.4	14
13	Functional mutant GATA4 identification and potential application in preimplantation diagnosis of congenital heart diseases. Gene, 2018, 641, 349-354.	1.0	15
14	Response by Zhao et al to Letter Regarding Article, "Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts― Circulation Research, 2018, 123, e67-e68.	2.0	3
15	Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Therapy, 2018, 25, 511-523.	2.3	72
16	Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts. Circulation Research, 2018, 123, e21-e31.	2.0	24
17	The Application of Induced Pluripotent Stem Cells in Cardiac Disease Modeling and Drug Testing. Journal of Cardiovascular Translational Research, 2018, 11, 366-374.	1.1	23
18	A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Research and Therapy, 2017, 8, 124.	2.4	100

Wei Lei

#	Article	IF	CITATIONS
19	MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Research and Therapy, 2017, 8, 268.	2.4	145
20	<i>CSTT1</i> Null Genotype Significantly Increases the Susceptibility to Urinary System Cancer: Evidences from 63,876 Subjects. Journal of Cancer, 2016, 7, 1680-1693.	1.2	7
21	microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase. Stem Cell Research and Therapy, 2016, 7, 61.	2.4	31
22	Follistatin-like 1 protects cardiomyoblasts from injury induced by sodium nitroprusside through modulating Akt and Smad1/5/9 signaling. Biochemical and Biophysical Research Communications, 2016, 469, 418-423.	1.0	13
23	A novel TP53 variant (rs78378222 A > C) in the polyadenylation signal is associated with increased cancer susceptibility: evidence from a meta-analysis. Oncotarget, 2016, 7, 32854-32865.	0.8	24
24	Alkaline Phosphatase Protects Lipopolysaccharide-Induced Early Pregnancy Defects in Mice. PLoS ONE, 2015, 10, e0123243.	1.1	19
25	Cross-species transcriptomic approach reveals genes in hamster implantation sites. Reproduction, 2014, 148, 607-621.	1.1	5
26	Crystallin $\hat{I}\pm B$ acts as a molecular guard in mouse decidualization: Regulation and function during early pregnancy. FEBS Letters, 2014, 588, 2944-2951.	1.3	14
27	Progesterone and heparin-binding epidermal growth factor-like growth factor regulate the expression of tight junction protein Claudin-3 during early pregnancy. Fertility and Sterility, 2013, 100, 1410-1418.	0.5	8
28	Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization, and defense against bacterial endotoxin in hamsters. Reproduction, 2013, 146, 419-432.	1.1	17
29	Differential Expression of Interleukin 1 Receptor Type II During Mouse Decidualization. Reproductive Sciences, 2012, 19, 923-931.	1.1	4
30	Combined Analysis of MicroRNome and 3â€2-UTRome Reveals a Species-specific Regulation of Progesterone Receptor Expression in the Endometrium of Rhesus Monkey*. Journal of Biological Chemistry, 2012, 287, 13899-13910.	1.6	34
31	Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice. Journal of Biological Chemistry, 2012, 287, 15174-15192.	1.6	62
32	Junctional Adhesion Molecule 2 Mediates the Interaction between Hatched Blastocyst and Luminal Epithelium: Induction by Progesterone and LIF. PLoS ONE, 2012, 7, e34325.	1.1	15
33	Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertility and Sterility, 2011, 96, 150-155.e5.	0.5	97
34	The Integrative Analysis of microRNA and mRNA Expression in Mouse Uterus under Delayed Implantation and Activation. PLoS ONE, 2010, 5, e15513.	1.1	38
35	Estrogen Regulates Amiloride-Binding Protein 1 through CCAAT/Enhancer-Binding Protein-Î ² in Mouse Uterus during Embryo Implantation and Decidualization. Endocrinology, 2010, 151, 5007-5016.	1.4	38
36	Progesterone regulation of glutathione S-transferase Mu2 expression in mouse uterine luminal epithelium during preimplantation period. Fertility and Sterility, 2009, 91, 2123-2130.	0.5	13

Wei Lei

#	Article	IF	CITATIONS
37	Effects of androgen on embryo implantation in the mouse delayed-implantation model. Fertility and Sterility, 2008, 90, 1376-1383.	0.5	37
38	MicroRNA Expression and Regulation in Mouse Uterus during Embryo Implantation. Journal of Biological Chemistry, 2008, 283, 23473-23484.	1.6	191
39	Differential expression and regulation of prostaglandin transporter and metabolic enzymes in mouse uterus during blastocyst implantation. Fertility and Sterility, 2007, 88, 1256-1265.	0.5	13