Akhat G Mustafin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6387657/publications.pdf

Version: 2024-02-01

			758635	7	94141
132		688	12		19
papers		citations	h-index		g-index
	. '				
138		138	138		576
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Advances, 2020, 10, 7468-7491.	1.7	62
2	ATR-FTIR spectroscopic investigation of the cis- and trans- bis-(\hat{l}_{\pm} -amino acids) copper(II) complexes. Journal of Molecular Structure, 2017, 1137, 260-266.	1.8	32
3	Nucleophilic cyclopropanation of [60]fullerene by the addition–elimination mechanism. RSC Advances, 2019, 9, 22428-22498.	1.7	28
4	Evaluation of Cytotoxicity and \hat{l}_{\pm} -Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids. Molecules, 2020, 25, 4833.	1.7	25
5	Methane conversion to valuable chemicals over nanostructured Mo/ZSM-5 catalysts. Petroleum Chemistry, 2011, 51, 174-186.	0.4	22
6	Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline. Chinese Journal of Polymer Science (English Edition), 2019, 37, 774-782.	2.0	22
7	Polymerization of new aniline derivatives: synthesis, characterization and application as sensors. RSC Advances, 2021, 11, 21006-21016.	1.7	22
8	Synthesis and physicochemical properties of poly[2â€(2â€chloroâ€1â€methylbutâ€2â€enâ€1â€yl)aniline] obtain various dopants. Polymer International, 2020, 69, 804-812.	ned with	21
9	Production of sulfur nanoparticles from aqueous solution of potassium polysulfide. Russian Journal of Applied Chemistry, 2012, 85, 1832-1837.	0.1	17
10	Inhibiting effect of 6-methyluracil derivatives on the free -radical oxidation of 1,4-dioxane. Russian Chemical Bulletin, 2010, 59, 517-521.	0.4	15
11	Solar-energy photoconverters based on thin films of organic materials. Technical Physics Letters, 2013, 39, 854-857.	0.2	15
12	Preparation and investigation of soluble functionalized polyanilines. Physics of the Solid State, 2017, 59, 1253-1259.	0.2	15
13	Experimental and theoretical substantiation of differences of geometric isomers of copper(II) α-amino acid chelates in ATR-FTIR spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117950.	2.0	14
14	Anions of uracils: N1 or N3? That is the question. Computational and Theoretical Chemistry, 2016, 1078, 81-87.	1.1	12
15	Specific features of thermal decomposition of mechanically activated calcium peroxide. Russian Journal of Applied Chemistry, 2010, 83, 1794-1798.	0.1	11
16	Antibacterial properties of polyaniline derivatives. Journal of Applied Polymer Science, 2021, 138, 51397.	1.3	11
17	Chemical precipitation of sulfur nanoparticles from aqueous solutions. Russian Journal of Applied Chemistry, 2014, 87, 700-708.	0.1	10
18	Synthesis and Physicochemical Properties of Poly(2-ethyl-3-methylindole). Macromolecules, 2020, 53, 8050-8059.	2.2	10

#	Article	IF	Citations
19	Synthesis and physicochemical properties of poly[2-(cyclohex-2-en-1-yl)aniline] as a new polyaniline derivative. New Journal of Chemistry, 2021, 45, 6356-6366.	1.4	10
20	Preparation and Antihypoxic Activity of Complexes of Uracil Derivatives with Dicarboxylic Acids. Pharmaceutical Chemistry Journal, 2014, 48, 93-96.	0.3	9
21	Recovery of heavy metal ions with calcium peroxide microparticles. Russian Journal of Applied Chemistry, 2016, 89, 360-366.	0.1	9
22	Effect of Cobalt Phthalocyanine on Synthesis and Physicochemical Properties of Polyaniline. ChemistrySelect, 2019, 4, 11307-11314.	0.7	9
23	The structural factors affecting the sensory properties of polyaniline derivatives. Sustainable Energy and Fuels, 2022, 6, 3435-3445.	2.5	9
24	New monomers for fullerene-containing polymers. Russian Journal of Organic Chemistry, 2014, 50, 179-182.	0.3	8
25	UV spectroscopy of monosubstituted derivatives of 1,2-dihydro-C60-fullerenes. Journal of Structural Chemistry, 2012, 53, 1081-1086.	0.3	7
26	Fe(CrO2)2-catalyzed, photoactivated oxidative one-pot tandem synthesis of substituted quinolines from primary alcohols and arylamines. Chemistry of Heterocyclic Compounds, 2018, 54, 369-374.	0.6	7
27	Influence of the absolute configuration of the ligand's chiral center on the structure of planar-square phenyl-containing bis-(N,O)copper(II) chelates. Journal of Molecular Structure, 2021, 1236, 130303.	1.8	7
28	ESTIMATING THE STABILITY OF METAL–LIGAND BONDING IN CARBOXYL-CONTAINING POLYMER COMPLEXES BY IR SPECTROSCOPY. Journal of Structural Chemistry, 2020, 61, 1876-1887.	0.3	7
29	Oxidation and Destruction of Polyvinyl Alcohol in the Aqueous Phase. International Journal of Chemical Kinetics, 2013, 45, 821-831.	1.0	6
30	Use of micrometer hematite particles and nanodispersed goethite as sorbent for heavy metals. Russian Journal of Applied Chemistry, 2014, 87, 1456-1463.	0.1	6
31	Investigation of the mechanism of the inhibited oxidation of $1,4$ -dioxane by mathematical modeling. Kinetics and Catalysis, $2015, 56, 300-303$.	0.3	6
32	Kinetics, mechanism, and mathematical model of the reaction between uracil and hydrogen peroxide in aqueous solution. Kinetics and Catalysis, 2015, 56, 563-568.	0.3	6
33	Acrylate and methacrylate derivatives of fullerenes as electron-selective buffer layer materials for inverted organic solar cells. Mendeleev Communications, 2015, 25, 348-349.	0.6	6
34	Specific Intermolecular Interactions in the Supramolecular Structure of 5â€Hydroxyâ€6â€Methyluracil: A <scp>DFT</scp> Study of the Hydrogenâ€bonded Dimers. Journal of the Chinese Chemical Society, 2017, 64, 143-151.	0.8	6
35	Theoretical Models for Quantitative Description of the Acid–Base Equilibria of the 5,6-Substituted Uracils. Journal of Physical Chemistry A, 2018, 122, 341-349.	1.1	6
36	Luminescence of aromatic hydrocarbon molecules in the sonication of terbium sulfate suspensions. Ultrasonics Sonochemistry, 2019, 50, 251-254.	3.8	6

#	Article	IF	CITATIONS
37	Effect of metal phthalocyanines on the synthesis and physicochemical properties of polyaniline. Mendeleev Communications, 2020, 30, 624-626.	0.6	6
38	Poly[<i>N</i> -(2-chloroprop-2-en-1-yl)aniline]s: synthesis, polymer analogous reaction, and physicochemical properties. Polymer Chemistry, 2021, 12, 5650-5661.	1.9	6
39	Intramolecular cyclization ofortho-(cyclohex-2-enyl)anilines. Modified synthesis of ellipticine. Russian Chemical Bulletin, 1999, 48, 2121-2126.	0.4	5
40	UV spectroscopy of methanofullerene derivatives with different degrees of substitution. Russian Journal of Physical Chemistry A, 2013, 87, 1692-1695.	0.1	5
41	Fullerene containing norbornenes: synthesis and ring-opening metathesis polymerization. Tetrahedron, 2014, 70, 8040-8046.	1.0	5
42	Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone–Oxygen Mixture and Hydrogen Peroxide. Russian Journal of Physical Chemistry A, 2018, 92, 419-423.	0.1	5
43	Influence of Synthesis Conditions on the Physicochemical Properties of Poly-2-[(2E)-1-methyl-2-buten-1-yl]aniline. Polymer Science - Series B, 2021, 63, 135-141.	0.3	5
44	Synthesis and Physicochemical Properties of Poly[2â€(1â€methylbutâ€1â€enâ€1â€yl)aniline] and Its Copolymers. ChemistrySelect, 2021, 6, 8942-8949.	· 0.7	5
45	Quantumâ€chemical approaches in the study of fullerene and its derivatives by the example of the most typical cycloaddition reactions: A review. International Journal of Quantum Chemistry, 2022, 122, .	1.0	5
46	Synthesis and Promising Cytotoxic Activity of Betulonic Acid Modified Derivatives. ChemistrySelect, 2021, 6, 13253-13260.	0.7	5
47	New type of interaction of 5-iodopyrimidine nucleosides with alkynes. Russian Chemical Bulletin, 1993, 42, 563-566.	0.4	4
48	Ozonolysis of ortho-alkenylanilines. Russian Chemical Bulletin, 2003, 52, 989-992.	0.4	4
49	UV spectroscopic quantitative determination of methanofullerene derivatives with a different degree of substitution. Journal of Structural Chemistry, 2013, 54, 719-723.	0.3	4
50	Experimental and quantum-chemical studies of the reactions of 6-methyluracil with succinic and fumaric acids. Russian Journal of Physical Chemistry A, 2014, 88, 2068-2072.	0.1	4
51	New methanofullerene as a buffer layer in organic solar cells. Physica B: Condensed Matter, 2015, 458, 114-116.	1.3	4
52	Preparation, Toxicity, and Anti-Inflammatory Activity of Complexes of Uracil Derivatives with Polyfunctional Acids. Pharmaceutical Chemistry Journal, 2017, 50, 649-653.	0.3	4
53	Ring-opening metathesis polymerization (ROMP) of fullerene-containing monomers in the presence of a first-generation Grubbs catalyst. Kinetics and Catalysis, 2017, 58, 111-121.	0.3	4
54	Quantitative structure–activity relationship of the thymidylate synthase inhibitors of Mus musculus in the series of quinazolin-4-one and quinazolin-4-imine derivatives. Journal of Molecular Graphics and Modelling, 2018, 85, 198-211.	1.3	4

#	Article	IF	CITATIONS
55	Kinetic study of the reaction of nucleophilic cyclopropanation of C ₆₀ fullerene with halogenated maleopimarimide. International Journal of Chemical Kinetics, 2019, 51, 311-320.	1.0	4
56	Synthesis of Nitro, Amino, and Halo Derivatives of 2-Ethyl-2-methyl-2,3-dihydro-1H-indole. Russian Journal of Organic Chemistry, 2019, 55, 1539-1546.	0.3	4
57	Quantitative structure-property relationship modeling of the C60 fullerene derivatives as electron acceptors of polymer solar cells: Elucidating the functional groups critical for device performance. Journal of Molecular Graphics and Modelling, 2019, 88, 49-61.	1.3	4
58	Modification of Azepanobetulin at the Isopropenyl Group. Russian Journal of Organic Chemistry, 2020, 56, 1582-1587.	0.3	4
59	Determination of the chain termination rate constants of the radical chain oxidation of organic compounds on antioxidant molecules by the QSPR method. Russian Chemical Bulletin, 2020, 69, 1679-1691.	0.4	4
60	Transformations of \hat{l}^2 -d-xylofuranosyl nucleosides. Synthesis of $3\hat{a} \in 2$ -azido- $3\hat{a} \in 2$ -deoxythymidine. Russian Chemical Bulletin, 1998, 47, 2007-2008.	0.4	3
61	Synthesis and antioxidant activity of aminomethylated 6-methyluracil derivatives. Pharmaceutical Chemistry Journal, 2010, 44, 123-125.	0.3	3
62	5-amino-6-methyluracil is a promising pyrimidine antioxidant. Doklady Biological Sciences, 2013, 448, 7-9.	0.2	3
63	Chemiluminescence in the reaction of ozone with 6-methyluracil in aqueous solutions. Russian Journal of Physical Chemistry A, 2015, 89, 2210-2212.	0.1	3
64	A study of the sorption properties of iron-containing sorbent nanoparticles with respect to heavy metal ions. Russian Journal of Physical Chemistry B, 2017, 11, 704-707.	0.2	3
65	A theoretical quantitative estimation of acidity of uracil and its derivatives through the p K a values. Journal of the Chinese Chemical Society, 2018, 65, 1447-1452.	0.8	3
66	Kinetic investigation of the cyclopropanation process of fullerene C ₆₀ by halogenmethyl ketones under the conditions of the Bingel reaction. New Journal of Chemistry, 2020, 44, 7277-7285.	1.4	3
67	Synthesis and polymerization of 2-(1-methylbut-2-en-1-yl)aniline and its products modification. Polymer Testing, 2021, 104, 107351.	2.3	3
68	Reaction of 2-(1-methyl-2-butenyl)anilines with polyphosphoric acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 760-763.	0.0	2
69	A modified synthesis of ellipticine. Russian Chemical Bulletin, 1997, 46, 608-609.	0.4	2
70	Preparation of nanosized sulfur particles from aqueous solutions of calcium and sodium polysulfides. Russian Journal of Applied Chemistry, 2009, 82, 2087-2092.	0.1	2
71	Influence of the structure of the organoaluminum compound on the stereoregulating heterogeneity of catalytic systems based on TiCl4. Russian Journal of Applied Chemistry, 2012, 85, 974-979.	0.1	2
72	Effect of the \hat{I}^2 -substituent with respect to the azido group on the reactivity of methyl (2E)-3-[5-(azidomethyl)-2,2-diethyl-1,3-dioxolan-4-yl]-2-methylprop-2-enoate. Russian Journal of Organic Chemistry, 2013, 49, 1047-1054.	0.3	2

#	Article	IF	CITATIONS
73	Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass. Russian Journal of Physical Chemistry A, 2016, 90, 1993-1996.	0.1	2
74	Oxidation and destruction of arabinogalactan and pectins under the action of hydrogen peroxide and ozone-oxygen mixture. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 673-690.	0.8	2
75	Controlled stabilization of anionic forms of the uracil derivatives: A DFT study. Journal of Molecular Graphics and Modelling, 2018, 79, 65-71.	1.3	2
76	New Organic Polymers for Solar Cells. , 0, , .		2
77	Coprecipitation of Nanocomposites Based on Colloidal Particles of Sulfur and Carbonates of Alkaline-Earth Metals from Polysulfide Solutions. Colloid Journal, 2018, 80, 407-417.	0.5	2
78	Cracking of <i>n</i> êectadecane: A molecular dynamics simulation. Journal of the Chinese Chemical Society, 2019, 66, 881-890.	0.8	2
79	Light gasoil of catalytic cracking: A quantitative description of the physical properties by joint use of chromatoâ€massâ€spectrometry and molecular dynamics. Journal of the Chinese Chemical Society, 2020, 67, 33-40.	0.8	2
80	Effect of Cobalt Phthalocyanine on the Chemical Polymerization of Aniline. ChemistrySelect, 2020, 5, 5621-5628.	0.7	2
81	Effect of Dispersibility of Natural Sorbents on Their Sorption Activity for Cd(II), Pb(II), and Cu(II) Ions. Russian Journal of Physical Chemistry B, 2020, 14, 152-159.	0.2	2
82	Synthesis and Aminoalkylation of N-Propargyl Triterpene Aldimines. Russian Journal of Organic Chemistry, 2020, 56, 174-176.	0.3	2
83	One-Pot Wittig Synthesis of Methyl-3-[5-(Hydroxymethyl)-2-Furyl]Acrylate from Fructose. Chemistry of Natural Compounds, 2020, 56, 341-342.	0.2	2
84	Synthesis of 5-(hydroxy-, chloro-, bromomethyl)furan-2-enones Based on Fructose and their Antioxidant Activity. Chemistry of Natural Compounds, 2021, 57, 869-874.	0.2	2
85	SYNTHESIS AND PROPERTIES OF ORTHO-ALKYL DERIVATIVES OF POLYANILINE. , 2020, , 291.	0.0	2
86	The interaction of piperylene and its chlorine derivatives with aromatic amines. Butlerovskie SoobÅeniâ, 2019, 58, 22-33.	0.1	2
87	Furan Analog of the Alkaloid Dubiamine Based on 5-Hydroxymethylfurfurol. Chemistry of Natural Compounds, 2022, 58, 185-186.	0.2	2
88	Analysis of the Products from the Reaction of L-Cysteine with Fe(III) Compounds in Acidic Medium. Journal of Applied Spectroscopy, 2022, 89, 18-23.	0.3	2
89	Photoconductivity of Thin Films Obtained from a New Type of Polyindole. Materials, 2022, 15, 228.	1.3	2
90	Claisen rearrangement in N-allylaniline series. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 1149-1153.	0.0	1

#	Article	IF	CITATIONS
91	A new type of reaction between 5-iodopyrimidinonucleosides and alkynes. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1135-1135.	0.0	1
92	Synthesis of ?-D-xylofuranosyl- and 2,2?-anhydro-1-?-D-lyxofuranosylpyrimidine nucleosides. Russian Chemical Bulletin, 1993, 42, 1095-1099.	0.4	1
93	Transformations of β-d-xylofuranosyl nucleosides. The effective synthesis of 2′,3′-dideoxy-2′,3′-didehydrothymidine. Russian Chemical Bulletin, 1997, 46, 1362-1363.	0.4	1
94	An unexpected reaction of 2-(cyclopent-2-enyl)aniline hydrochloride with dimethyldioxirane. Russian Chemical Bulletin, 1998, 47, 1611-1612.	0.4	1
95	Ozonolysis of N-acetyl-2-(cyclopent-2-enyl)aniline. Mendeleev Communications, 2001, 11, 146-147.	0.6	1
96	Anomalous Effect of Hydrogen Peroxide on 2-Propanol Oxidation Inhibited by Uracil Additives. Doklady Physical Chemistry, 2004, 394, 9-11.	0.2	1
97	New "sp 2 -bonded―carbanucleosides. Russian Journal of Organic Chemistry, 2009, 45, 256-258.	0.3	1
98	Synthesis of methyl (E)-2-[(3S,4S)-4-hydroxy-3-(pent-3-yloxy)-pyrrolidin-2-ylidene]propanoate and its unusual recyclization. Russian Chemical Bulletin, 2013, 62, 1227-1231.	0.4	1
99	Enhancing 4-propylheptane dissociation with nickel nanocluster based on molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2017, 72, 106-111.	1.3	1
100	Physicochemical characteristics of the radical copolymerization of fullerene-containing methacrylates with vinyl monomers. Russian Journal of Physical Chemistry B, 2017, 11, 324-329.	0.2	1
101	Modeling the Self-Assembly of 5-Hydroxy-6-methyluracil within Electrostatic Potential Approach. Russian Journal of Physical Chemistry A, 2018, 92, 1523-1529.	0.1	1
102	Destructive Conversion of Gas Oil in the Presence of a Nickel-Based Nanosized Catalyst. Petroleum Chemistry, 2018, 58, 379-386.	0.4	1
103	Kinetics of the Oxidation of Uracil and Six of Its Derivatives by Ozone in Aqueous Solutions. Russian Journal of Physical Chemistry A, 2019, 93, 1672-1676.	0.1	1
104	Interactions of uracil and its derivatives with polyfunctional acids. Russian Chemical Bulletin, 2019, 68, 1954-1961.	0.4	1
105	Synthesis of New Methanofullerenes with Phthalimide Fragment. Russian Journal of General Chemistry, 2020, 90, 244-248.	0.3	1
106	Functionalized polyanilines: influence of the surface morphology on the electrophysical and sensory properties of thin films based on them. Letters on Materials, 2021, 11, 140-145.	0.2	1
107	Cyclization of 2-(l-methyl-2-butenyl)aniline in polyphosphoric acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 1964-1964.	0.0	0
108	Photochemical synthesis of 1-ethylperhydrocyclopent[b]indoline. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 1965-1965.	0.0	0

#	Article	IF	CITATIONS
109	The spontaneous claisen rearrangement of N-(1-methyl-2-butenyl)-2-methyl-2-ethylindoline hydrochloride. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1116-1116.	0.0	O
110	Claisen rearrangement of sterically hindered N-alkenylindolines. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 561-565.	0.0	0
111	Claisen rearrangement and cyclization of N-alkenyl-1,2,3,4-tetrahydroquinolines. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1657-1661.	0.0	0
112	Cyclization of 2-(1?-alkyl-2?-alkenyl)anilines in polyphosphoric acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 2551-2554.	0.0	0
113	Synthesis of alkenylquinolines and cyclization of (1-methyl-2-butenyl)quinaldines in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 1990, 26, 1137-1139.	0.6	0
114	Claisen aromatic amino rearrangement in the series of fluorinated anilines. Russian Chemical Bulletin, 1998, 47, 188-190.	0.4	0
115	Structure of $1-\hat{l}^2$ -d-xylofuranosyluracil in the crystal and in solution. Russian Chemical Bulletin, 1998, 47, 1340-1342.	0.4	0
116	Ozonolysis of ortho-Alkenylanilines ChemInform, 2003, 34, no.	0.1	0
117	Solvent effect on molecular characteristics of polybutadiene and on the kinetic heterogeneity of catalytic systems based on TiCl4. Russian Journal of Applied Chemistry, 2010, 83, 487-491.	0.1	0
118	Prognostication of the anticorrosive activity in the series of pentenylarylamines and their industrial introduction. Russian Journal of Applied Chemistry, 2012, 85, 1182-1185.	0.1	0
119	Low-toxic nitrogen-containing antioxidant for polyvinyl chloride. Russian Journal of Applied Chemistry, 2015, 88, 626-629.	0.1	0
120	On the Change in the Component Composition of Straight-Run Fuel Oil Distillate by Catalytic Cracking in the Presence of Zinc, Nickel, and Iron 2-Ethylhexanoates. Petroleum Chemistry, 2018, 58, 1051-1055.	0.4	0
121	Chemiluminescence in the Reaction of Ozone-Mediated Aniline Oxidation. Russian Journal of Physical Chemistry A, 2019, 93, 181-183.	0.1	0
122	Effect of Solvents on Acid-Catalyzed Claisen Amino Rearrangement in N-(1-Methyl-2-butenyl)aniline. Russian Journal of Physical Chemistry A, 2019, 93, 23-27.	0.1	0
123	Process of electrochemical electrode modification by polyaniline in the frame of percolation model. Journal of Solid State Electrochemistry, 2019, 23, 1221-1235.	1.2	0
124	Synthesis of Poly(2-(cyclopent-2-en-1-yl)aniline) and Investigation of Its Electrophysical and Physicochemical Properties. Physics of the Solid State, 2019, 61, 2233-2240.	0.2	0
125	Transformations of 2-Ethyl-2-methyl-2,3-dihydro-1H-indole at the 3-Position. Russian Journal of Organic Chemistry, 2020, 56, 76-81.	0.3	0
126	Classification of raw sugar by PCA of voltammetric signals from tube electrodes. New Journal of Chemistry, 2021, 45, 13512-13518.	1.4	0

#	Article	IF	CITATIONS
127	Efficient Synthesis of Poly(2-ethyl-3-methylindole). Russian Journal of Organic Chemistry, 2021, 57, 1176-1179.	0.3	o
128	EFFECT OF SYNTHESIS CONDITIONS ON THE LUMINESCENCE PROPERTIES OF POLY[2-(CYCLOHEX-2-EN-1-YL)ANILINE]., 2021,, 640.	0.0	0
129	STERIC COMPLEMENTARITY OF CONJUGATES OF SOME DERIVATIVES OF 5-AMINOAND 5-HYDROXY-6-METHYLURACIL WITH BENZOIC ACID WITH THYMIDYLATE KINASE OF THE HUMAN HERPES SIMPLEX VIRUS TYPE 1., 2021, , 975.	0.0	0
130	Histomorphometric study of rat liver during the treatment of the acute toxic injury. Gigiena I Sanitariia, 2021, 100, 1283-1286.	0.1	0
131	Influence of Solvent upon Reactive Capacity of Ozone in Respect of 1,3-Dimethyl-Substituted Uracils. Ozone: Science and Engineering, 0, , 1-8.	1.4	O
132	Hepatoprotective efficacy of the use of oxymethyl uracil in various experimental models. Gigiena I Sanitariia, 2021, 100, 1278-1282.	0.1	0