
Antonio Sica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6387581/publications.pdf Version: 2024-02-01

ANTONIO SICA

#	Article	IF	CITATIONS
1	Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clinical Reviews in Allergy and Immunology, 2023, 64, 123-144.	2.9	40
2	Inflammaging and Osteoarthritis. Clinical Reviews in Allergy and Immunology, 2023, 64, 222-238.	2.9	67
3	Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers, 2022, 14, 510.	1.7	7
4	Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cellular and Molecular Immunology, 2021, 18, 829-841.	4.8	21
5	Heme catabolism by tumor-associated macrophages controls metastasis formation. Nature Immunology, 2021, 22, 595-606.	7.0	59
6	Regulation of PD-L1 Expression by NF-κB in Cancer. Frontiers in Immunology, 2020, 11, 584626.	2.2	179
7	Frailty in Rheumatic Diseases. Frontiers in Immunology, 2020, 11, 576134.	2.2	40
8	Immunometabolic Status of COVID-19 Cancer Patients. Physiological Reviews, 2020, 100, 1839-1850.	13.1	20
9	The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 6866.	1.8	20
10	Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. International Journal of Molecular Sciences, 2020, 21, 5845.	1.8	51
11	Influence of Innate Immunity on Cancer Cell Stemness. International Journal of Molecular Sciences, 2020, 21, 3352.	1.8	20
12	Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. , 2020, 8, e000489.		30
13	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.4	81
14	Oncolytic virotherapy: new weapon for breast cancer treatment. Ecancermedicalscience, 2020, 14, 1149.	0.6	12
15	A Proteomic Analysis of GSD-1a in Mouse Livers: Evidence for Metabolic Reprogramming, Inflammation, and Macrophage Polarization. Journal of Proteome Research, 2019, 18, 2965-2978.	1.8	8
16	Myeloid-Derived Suppressor Cells: Ductile Targets in Disease. Frontiers in Immunology, 2019, 10, 949.	2.2	77
17	Membrane Cholesterol Regulates Macrophage Plasticity in Cancer. Cell Metabolism, 2019, 29, 1238-1240.	7.2	11
18	Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open, 2019, 4, e000457.	2.0	151

ANTONIO SICA

#	Article	IF	CITATIONS
19	Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC): what to add and what to leave out. Cancer Treatment Reviews, 2019, 75, 39-51.	3.4	124
20	Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 1938-1951.	0.4	58
21	Targeting Cancer Cells and Tumor Microenvironment in Preclinical and Clinical Models of Hodgkin Lymphoma Using the Dual PI3Kδ/γ Inhibitor RP6530. Clinical Cancer Research, 2019, 25, 1098-1112.	3.2	69
22	Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress, 2019, 3, 284-294.	1.4	40
23	Tumorâ€associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS Journal, 2018, 285, 717-733.	2.2	45
24	Protumor Steering of Cancer Inflammation by p50 NF-κB Enhances Colorectal Cancer Progression. Cancer Immunology Research, 2018, 6, 578-593.	1.6	38
25	Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis, 2018, 39, 1095-1104.	1.3	24
26	Tumor-associated myeloid cells as guiding forces of cancer cell stemness. Cancer Immunology, Immunotherapy, 2017, 66, 1025-1036.	2.0	42
27	Metabolic regulation of suppressive myeloid cells in cancer. Cytokine and Growth Factor Reviews, 2017, 35, 27-35.	3.2	27
28	Myeloid suppressor cells in cancer and autoimmunity. Journal of Autoimmunity, 2017, 85, 117-125.	3.0	154
29	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	1.8	130
30	Editorial. Current Opinion in Pharmacology, 2017, 35, vii-ix.	1.7	0
31	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	5.8	2,076
32	Macrophage polarization in pathology. Cellular and Molecular Life Sciences, 2015, 72, 4111-4126.	2.4	487
33	RORC1 Regulates Tumor-Promoting "Emergency―Granulo-Monocytopoiesis. Cancer Cell, 2015, 28, 253-269.	7.7	154
34	Molecular and epigenetic basis of macrophage polarized activation. Seminars in Immunology, 2015, 27, 237-248.	2.7	208
35	Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology, 2014, 59, 2034-2042.	3.6	359
36	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638

ΑΝΤΟΝΙΟ SICA

#	Article	IF	CITATIONS
37	Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy. Cancer Cell, 2014, 25, 846-859.	7.7	1,033
38	Macrophage plasticity and polarization in tissue repair and remodelling. Journal of Pathology, 2013, 229, 176-185.	2.1	1,868
39	Hypoxia-mediated regulation of macrophage functions in pathophysiology. International Immunology, 2013, 25, 67-75.	1.8	69
40	Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation, 2012, 122, 787-795.	3.9	4,755
41	Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs). Cancer Microenvironment, 2012, 5, 133-149.	3.1	81
42	Macrophages in cancer and infectious diseases: the â€~good' and the â€~bad'. Immunotherapy, 2011, 3, 1185-1202.	1.0	27
43	Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 2010, 22, 231-237.	2.4	1,270
44	Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor IºB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14978-14983.	3.3	551
45	Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Human Immunology, 2009, 70, 325-330.	1.2	304
46	A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident―monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 2009, 114, 901-914.	0.6	306
47	The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 2008, 66, 1-9.	2.0	866
48	Cancer-related inflammation. Nature, 2008, 454, 436-444.	13.7	9,279
49	Macrophage polarization in tumour progression. Seminars in Cancer Biology, 2008, 18, 349-355.	4.3	1,026
50	Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 2007, 117, 1155-1166.	3.9	1,031
51	A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective) Tj ETQq1	1 8.78431	4 rg₿T /Ove
52	p50 Nuclear Factor-l̂ºB Overexpression in Tumor-Associated Macrophages Inhibits M1 Inflammatory Responses and Antitumor Resistance. Cancer Research, 2006, 66, 11432-11440.	0.4	397
53	Macrophage Polarization Comes of Age. Immunity, 2005, 23, 344-346.	6.6	1,035
54	Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Seminars in Cancer Biology, 2004, 14, 155-160.	4.3	174

ΑΝΤΟΝΙΟ ΣΙCA

#	Article	IF	CITATIONS
55	The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 2004, 25, 677-686.	2.9	5,272
56	Regulation of the Chemokine Receptor CXCR4 by Hypoxia. Journal of Experimental Medicine, 2003, 198, 1391-1402.	4.2	778
57	Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 2002, 23, 549-555.	2.9	4,494
58	Autocrine Production of IL-10 Mediates Defective IL-12 Production and NF-ήB Activation in Tumor-Associated Macrophages. Journal of Immunology, 2000, 164, 762-767.	0.4	400
59	Bacterial Lipopolysaccharide Rapidly Inhibits Expression of C–C Chemokine Receptors in Human Monocytes. Journal of Experimental Medicine, 1997, 185, 969-974.	4.2	279