Kandikere Ramaiah Prabhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6387303/publications.pdf

Version: 2024-02-01

103 papers 5,050 citations

66343 42 h-index 66 g-index

141 all docs

141 docs citations

times ranked

141

4004 citing authors

#	Article	IF	CITATIONS
1	<i>N</i> -Triflination of pyrazolones: a new method for N–S bond formation. Organic and Biomolecular Chemistry, 2021, 19, 5534-5538.	2.8	5
2	Rhodium(<scp>iii</scp>)-catalyzed [5+1] annulation of 2-alkenylphenols with maleimides: access to highly functionalized spirocyclic skeletons. Chemical Communications, 2021, 57, 8194-8197.	4.1	19
3	Dual Role of the Rhodium(III) Catalyst in C–H Activation: [4 + 3] Annulation of Amide with Allylic Alcohols to 7-Membered Lactams. Journal of Organic Chemistry, 2021, 86, 4625-4637.	3.2	10
4	ZnBr ₂ Mediated Câ^'N Bond Formation using Cinnamyl Alcohol and 2â€Amino Pyridines. European Journal of Organic Chemistry, 2021, 2021, 3054-3058.	2.4	3
5	Rhodium(<scp>iii</scp>)-catalyzed synthesis of trisubstituted furans ⟨i>via⟨ i> vinylic Câ€"H bond activation. Organic and Biomolecular Chemistry, 2021, 19, 7470-7474.	2.8	2
6	Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron, 2021, 101, 132478.	1.9	44
7	Rhodium(III)-Catalyzed Cascade Reactions of Imines/Imidates with 4-Hydroxy-2-alkynoates to Synthesize Regioselective Furanone-Fused Isoquinoline Scaffolds. Journal of Organic Chemistry, 2021, 86, 17965-17974.	3.2	9
8	Cobaltâ€Catalyzed Regioselective [4+2] Annulation/Lactonization of Benzamides with 4â€Hydroxyâ€2â€Alkynoates under Aerobic Conditions. Advanced Synthesis and Catalysis, 2020, 362, 152-159.	4.3	21
9	Iodineâ€Promoted Oneâ€Pot Multicomponent Chemoselective Reaction for Câ€C/Câ€N and Câ€C/Câ€S Bond Formation Using Thiols. European Journal of Organic Chemistry, 2020, 2020, 5780-5784.	2.4	10
10	Visible light-mediated <i>ipso</i> -annulation of activated alkynes: access to 3-alkylated spiro[4,5]-trienones, thiaspiro[4,5]-trienones and azaspiro[4,5]-trienones. Chemical Communications, 2020, 56, 13165-13168.	4.1	25
11	Ligand-free Suzuki coupling reaction with highly recyclable ionic palladium catalyst, Ti1-xPdxO2-x (x = 0.03). Applied Catalysis A: General, 2020, 596, 117516.	4.3	15
12	Weak Coordinating Carbonyl-Directed Rhodium(III)-Catalyzed C–H Activation at the C4-Position of Indole with Allyl Alcohols. Journal of Organic Chemistry, 2020, 85, 5516-5524.	3.2	24
13	Sulfoxonium-Ylide-Directed C–H Activation and Tandem (4 + 1) Annulation. Organic Letters, 2020, 22, 2878-2882.	4.6	42
14	Rhodium(III)-Catalyzed C–H Activation: A Cascade Approach for the Regioselective Synthesis of Fused Heterocyclic Lactone Scaffolds. Journal of Organic Chemistry, 2020, 85, 3548-3559.	3.2	20
15	lodineâ€Catalyzed Câ^'H Functionalization of Cyclopentenedione with Benzamidine: A Double Dehydrogenative Oxidative Cyclization to Access Fused Imidazoles. Advanced Synthesis and Catalysis, 2020, 362, 2466-2473.	4.3	7
16	Synthesis of Furanone-Fused 1,2-Benzothiazine by Rh(III)-Catalyzed C–H Activation: Regioselective Oxidative Annulation Leading to in Situ Lactonization in One Pot. Journal of Organic Chemistry, 2019, 84, 11335-11342.	3.2	24
17	Manganeseâ€Catalysed Câ^'H Activation: A Regioselective Câ^'H Alkenylation of Indoles and other (hetero)aromatics with 4â€Hydroxyâ€2â€Alkynoates Leading to Concomitant Lactonization. Advanced Synthesis and Catalysis, 2019, 361, 4933-4940.	4.3	32
18	Synthesis of Naphthols by Rh(III)-Catalyzed Domino Câ€"H Activation, Annulation, and Lactonization Using Sulfoxonium Ylide as a Traceless Directing Group. Organic Letters, 2019, 21, 8424-8428.	4.6	57

#	Article	IF	CITATIONS
19	Cobalt(III)-Catalyzed $[4 + 2]$ Annulation of $\langle i \rangle N \langle i \rangle$ -Chlorobenzamides with Maleimides. Organic Letters, 2019, 21, 1068-1072.	4.6	72
20	Boronâ€Catalyzed Carbonate Functionality Transfer Reaction. Asian Journal of Organic Chemistry, 2019, 8, 320-323.	2.7	12
21	Weak Coordinating Carboxylate Directed Rhodium(III)-Catalyzed C–H Activation: Switchable Decarboxylative Heck-Type and [4 + 1] Annulation Reactions with Maleimides. Organic Letters, 2019, 21, 4525-4530.	4.6	54
22	Rh(III)-Catalyzed Oxidative Annulation of Sulfoximines with Arylalkynyl Silanes via Desilylation. Journal of Organic Chemistry, 2019, 84, 8248-8255.	3.2	11
23	Rh(III) atalyzed Distal Câ€H Alkenylation of Weakly Coordinating Acetamides Via Desilylation Pathway. Advanced Synthesis and Catalysis, 2019, 361, 3683-3688.	4.3	3
24	Visible-Light-Mediated Direct Decarboxylative Acylation of Electron-Deficient Heteroarenes Using α-Ketoacids. Journal of Organic Chemistry, 2019, 84, 5067-5077.	3.2	38
25	Cobalt(III)â€Catalyzed Direct <i>ortho </i> â€Alkenylation of Arylpyrazoles: A Comparative Study on Decarboxylation and Desilylation. European Journal of Organic Chemistry, 2019, 2019, 2735-2739.	2.4	7
26	Boron atalyzed Câ^'C Functionalization of Allyl Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 1301-1306.	4.3	22
27	Weak Directing Group Steered Formal Oxidative [2+2+2]-Cyclization for Selective Benzannulation of Indoles. Journal of Organic Chemistry, 2018, 83, 1810-1818.	3.2	39
28	Regioselective Sulfenylation of $\hat{l}\pm\hat{a}\in^2$ -CH ₃ or $\hat{l}\pm\hat{a}\in^2$ -CH ₂ Groups of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ke with Heterocyclic Thiols. Journal of Organic Chemistry, 2018, 83, 2986-2992.	tones 3.2	12
29	Cobalt(III)â^'Catalyzed Câ^'H Activation: A Secondary Amide Directed Decarboxylative Functionalization of Alkynyl Carboxylic Acids Wherein Amide NHâ€group Remains Unreactive. Advanced Synthesis and Catalysis, 2018, 360, 1370-1375.	4.3	35
30	lodine-Catalyzed Chemoselective Hydroamination Reaction Using 5-Mercaptotetrazoles Derivatives. ACS Omega, 2018, 3, 4908-4917.	3.5	9
31	Rh ^{III} â€Catalyzed Câ^'H Activation: Mizorokiâ€"Heckâ€Type Reaction of Maleimides. Asian Journal of Organic Chemistry, 2018, 7, 1338-1342.	2.7	32
32	Substituent-Directed Regioselective Azidation: Copper-Catalyzed Câ€"H Azidation and Iodine-Catalyzed Dearomatizative Azidation of Indole. Journal of Organic Chemistry, 2018, 83, 228-235.	3.2	27
33	Rh(<scp>iii</scp>)-Catalyzed <i>ortho</i> -C-(sp ⁾²)â€"H amidation of ketones and aldehydes under synergistic ligand-accelerated catalysis. Chemical Communications, 2018, 54, 12113-12116.	4.1	34
34	Employing Water as the Hydride Source in Synthesis: A Case Study of Diboron Mediated Alkyne Hydroarylation. Journal of Organic Chemistry, 2018, 83, 13707-13715.	3.2	26
35	Rhodium(<scp>iii</scp>)-catalyzed Câ€"H activation at the C4-position of indole: switchable hydroarylation and oxidative Heck-type reactions of maleimides. Chemical Communications, 2018, 54, 11200-11203.	4.1	88
36	Stereodivergent Alkyne Reduction by using Water as the Hydrogen Source. Chemistry - A European Journal, 2018, 24, 13954-13962.	3.3	43

#	Article	IF	Citations
37	Cobalt(III)â€Catalyzed Câ^'H Activation: Counter Anion Triggered Desilylative Direct <i>>orthoâ€</i> >Vinylation of Secondary Benzamides. Advanced Synthesis and Catalysis, 2018, 360, 3579-3584.	4.3	16
38	lodine-Catalyzed Chemoselective C–N Bond-Forming Reactions Using Benzylic or Cinnamyl Alcohols with Heterocyclic Thiols and Thiones. Journal of Organic Chemistry, 2018, 83, 11145-11153.	3.2	14
39	Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824.	1.4	142
40	lodine-Catalyzed Cross Dehydrogenative Coupling Reaction: Sulfenylation of Enaminones Using Dimethyl Sulfoxide as an Oxidant. Journal of Organic Chemistry, 2017, 82, 3084-3093.	3.2	69
41	Gold-Catalyzed [2,3]-Sigmatropic Rearrangement: Reaction of Aryl Allyl Alcohols with Diazo Compounds. Organic Letters, 2017, 19, 846-849.	4.6	22
42	Pd-Boron-Catalyzed One Carbon Isomerization of Olefins: Water Assisted Process at Room Temperature. Journal of Organic Chemistry, 2017, 82, 4859-4865.	3.2	22
43	Iridium(iii) catalyzed regioselective amidation of indoles at the C4-position using weak coordinating groups. Chemical Communications, 2017, 53, 5117-5120.	4.1	78
44	A deciduous directing group approach for the addition of aryl and vinyl nucleophiles to maleimides. Chemical Communications, 2017, 53, 6251-6254.	4.1	67
45	lodine-catalyzed sulfenylation of pyrazolones using dimethyl sulfoxide as an oxidant. Organic and Biomolecular Chemistry, 2017, 15, 5191-5196.	2.8	47
46	Cobalt(III)-Catalyzed C–H Activation: Azo Directed Selective 1,4-Addition of <i>Ortho</i> C–H Bond to Maleimides. Journal of Organic Chemistry, 2017, 82, 6913-6921.	3.2	65
47	Cobalt(III)â€Catalyzed Câ€H Amidation of Azobenzene Derivatives Using Dioxazolone as an Amidating Reagent. ChemistrySelect, 2017, 2, 5965-5969.	1.5	18
48	Co(III)-Catalyzed C–H Activation: A Site-Selective Conjugate Addition of Maleimide to Indole at the C-2 Position. ACS Omega, 2017, 2, 4470-4479.	3.5	47
49	Sulfur Assisted Tandem Electrophilic Fluorinative Deacylation: Synthesis of \hat{l}_{\pm} -Fluoro \hat{l}^{2} -Ketosulfides. Journal of Organic Chemistry, 2017, 82, 9525-9536.	3.2	6
50	Ru(II)-Catalyzed C–H Amidation of Indoline at the C7-Position Using Dioxazolone as an Amidating Agent: Synthesis of 7-Amino Indoline Scaffold. Journal of Organic Chemistry, 2017, 82, 13405-13413.	3.2	43
51	Catalyst-Free Cross-Dehydrogenative Coupling Strategy Using Air as an Oxidant: Synthesis of α-Aminophosphonates. ACS Omega, 2017, 2, 4885-4893.	3.5	20
52	Generation of Hydrogen from Water: A Pd-Catalyzed Reduction of Water Using Diboron Reagent at Ambient Conditions. Organic Letters, 2016, 18, 5062-5065.	4.6	77
53	Electronic Nature of Ketone Directing Group as a Key To Control C-2 vs C-4 Alkenylation of Indoles. Organic Letters, 2016, 18, 5496-5499.	4.6	119
54	lodine-Catalyzed Cross Dehydrogenative Coupling Reaction: A Regioselective Sulfenylation of Imidazoheterocycles Using Dimethyl Sulfoxide as an Oxidant. Journal of Organic Chemistry, 2016, 81, 7838-7846.	3.2	86

#	Article	IF	Citations
55	A copper catalyzed azidation and peroxidation of \hat{l}^2 -naphthols via an oxidative dearomatization strategy. Chemical Communications, 2016, 52, 11084-11087.	4.1	33
56	<i>N</i> ″odosuccinimide Catalyzed Oxidative Selenocyanation and Thiocyanation of Electron Rich Arenes. ChemistrySelect, 2016, 1, 1033-1038.	1.5	45
57	Synthesis of $\hat{l}\pm$ -sulfenyl monoketones via a metal-free oxidative cross dehydrogenative coupling (CDC) reaction. Organic and Biomolecular Chemistry, 2016, 14, 7665-7670.	2.8	17
58	Iodine Promoted Regioselective α-Sulfenylation of Carbonyl Compounds using Dimethyl Sulfoxide as an Oxidant. Organic Letters, 2016, 18, 6090-6093.	4.6	61
59	Ru(II)-Catalyzed C–H Activation: Amide-Directed 1,4-Addition of the Ortho C–H Bond to Maleimides. Journal of Organic Chemistry, 2016, 81, 6056-6065.	3.2	76
60	An Efficient Tertiary Azidation of 1,3â€Dicarbonyl Compounds in Water Catalyzed by Tetrabutylammonium lodide. European Journal of Organic Chemistry, 2016, 2016, 447-452.	2.4	25
61	Pd-Catalyzed Hydroborylation of Alkynes: A Ligand Controlled Regioselectivity Switch for the Synthesis of \hat{l}_{\pm} - or \hat{l}^{2} -Vinylboronates. Organic Letters, 2016, 18, 432-435.	4.6	86
62	Transition metal-free Minisci reaction promoted by NCS, and TBHP: acylation of heteroarenes. Tetrahedron, 2016, 72, 959-967.	1.9	45
63	Sulfenylation of β-Diketones Using C– <i>H</i> Functionalization Strategy. Organic Letters, 2015, 17, 2944-2947.	4.6	36
64	Copper atalyzed Direct Transformation of Secondary Allylic and Benzylic Alcohols into Azides and Amides: An Efficient Utility of Azide as a Nitrogen Source. European Journal of Organic Chemistry, 2015, 2015, 2706-2717.	2.4	16
65	lodine promoted α-hydroxylation of ketones. Organic and Biomolecular Chemistry, 2015, 13, 6749-6753.	2.8	30
66	A chemoselective \hat{I} -aminoxylation of aryl ketones: a cross dehydrogenative coupling reaction catalysed by Bu4NI. Organic and Biomolecular Chemistry, 2015, 13, 11651-11656.	2.8	31
67	Site-Selective Addition of Maleimide to Indole at the C-2 Position: Ru(II)-Catalyzed C–H Activation. Organic Letters, 2015, 17, 4662-4665.	4.6	102
68	Ru (II)-Catalyzed C–H Activation: Ketone-Directed Novel 1,4-Addition of <i>Ortho</i> C–H Bond to Maleimides. Organic Letters, 2015, 17, 4658-4661.	4.6	133
69	Regioselective Synthesis of Vinyl Halides, Vinyl Sulfones, and Alkynes: A Tandem Intermolecular Nucleophilic and Electrophilic Vinylation of Tosylhydrazones. Organic Letters, 2015, 17, 18-21.	4.6	75
70	Copperâ€Catalyzed Oxidative Transformation of Secondary Alcohols to 1,5â€Disubstituted Tetrazoles. Advanced Synthesis and Catalysis, 2014, 356, 946-950.	4.3	16
71	A Transition Metal-Free Minisci Reaction: Acylation of Isoquinolines, Quinolines, and Quinoxaline. Journal of Organic Chemistry, 2014, 79, 3856-3865.	3.2	130
72	A metal-free and a solvent-free synthesis of thio-amides and amides: an efficient Friedel–Crafts arylation of isothiocyanates and isocyanates. RSC Advances, 2014, 4, 60798-60807.	3.6	25

#	Article	IF	Citations
7 3	Copper-Catalyzed Decarboxylative Sulfonylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carboxylic Acids. Journal of Organic Chemistry, 2014, 79, 8110-8117.	3.2	51
74	Regioselective Thiolation of Arenes and Heteroarenes: C–H Functionalization Strategy for C–S Bond Formation. Journal of Organic Chemistry, 2014, 79, 9655-9668.	3.2	55
7 5	Synthesis of substituted nitroolefins: a copper catalyzed nitrodecarboxylation of unsaturated carboxylic acids. Organic and Biomolecular Chemistry, 2013, 11, 6713.	2.8	51
76	Regioselective Synthesis of 4-Substituted Indoles via C–H Activation: A Ruthenium Catalyzed Novel Directing Group Strategy. Organic Letters, 2013, 15, 6262-6265.	4.6	162
77	Cross-Hetero-Dehydrogenative Coupling Reaction of Phosphites: A Catalytic Metal-Free Phosphorylation of Amines and Alcohols. Organic Letters, 2013, 15, 6062-6065.	4.6	117
78	A Versatile Câ€"H Functionalization of Tetrahydroisoquinolines Catalyzed by Iodine at Aerobic Conditions ^{â€} . Organic Letters, 2013, 15, 1092-1095.	4.6	241
79	A non-isothiocyanate route to synthesize trisubstituted thioureas of arylamines using in situ generated dithiocarbamates. RSC Advances, 2013, 3, 3079.	3.6	10
80	Highly Regioselective C2-Alkenylation of Indoles Using the $\langle i \rangle N \langle i \rangle$ -Benzoyl Directing Group: An Efficient Ru-Catalyzed Coupling Reaction. Organic Letters, 2013, 15, 2818-2821.	4.6	124
81	Pd-Catalyzed Cross-Coupling Reactions of Hydrazones: Regioselective Synthesis of Highly Branched Dienes. Journal of Organic Chemistry, 2013, 78, 12136-12143.	3.2	29
82	Palladium Catalyzed Coupling of Tosylhydrazones with Aryl and Heteroaryl Halides in the Absence of External Ligands: Synthesis of Substituted Olefins. Journal of Organic Chemistry, 2012, 77, 11027-11033.	3.2	43
83	Câ \in "H functionalization of tertiary amines by cross dehydrogenative coupling reactions: solvent-free synthesis of $\hat{1}$ ±-aminonitriles and $\hat{1}$ 2-nitroamines under aerobic condition. Organic and Biomolecular Chemistry, 2012, 10, 835-842.	2.8	104
84	NIS atalyzed Reactions: Amidation of Acetophenones and Oxidative Amination of Propiophenones. Chemistry - A European Journal, 2012, 18, 14638-14642.	3.3	138
85	A novel oxidative transformation of alcohols to nitriles: an efficient utility of azides as a nitrogen source. Chemical Communications, 2012, 48, 5506.	4.1	65
86	A non-metal catalysed oxidation of primary azides to nitriles at ambient temperature. Organic and Biomolecular Chemistry, 2012, 10, 2753.	2.8	33
87	Guanidine catalyzed aerobic reduction: a selective aerobic hydrogenation of olefins using aqueous hydrazine. Chemical Communications, 2012, 48, 6583.	4.1	30
88	Chemoselective Schmidt Reaction Mediated by Triflic Acid: Selective Synthesis of Nitriles from Aldehydes. Journal of Organic Chemistry, 2012, 77, 5364-5370.	3.2	118
89	Iron(III) Chloride atalysed Aerobic Reduction of Olefins using Aqueous Hydrazine at Ambient Temperature. Advanced Synthesis and Catalysis, 2012, 354, 1437-1442.	4.3	29
90	CDC Reactions of <i>Nâ€</i> Aryl Tetrahydroisoquinolines Using Catalytic Amounts of DDQ: CH Activation under Aerobic Conditions. Chemistry - A European Journal, 2012, 18, 5160-5164.	3.3	139

#	Article	IF	CITATIONS
91	Molybdenum trioxide catalyzed oxidative cross-dehydrogenative coupling of benzylic sp3 C–H bonds: synthesis of α-aminophosphonates under aerobic conditions. Tetrahedron Letters, 2012, 53, 1456-1459.	1.4	48
92	lodine-Catalyzed Amination of Benzoxazoles: A Metal-Free Route to 2-Aminobenzoxazoles under Mild Conditions. Journal of Organic Chemistry, 2011, 76, 7938-7944.	3.2	127
93	An oxidative cross-dehydrogenative-coupling reaction in water using molecular oxygen as the oxidant: vanadium catalyzed indolation of tetrahydroisoquinolines. Chemical Communications, 2011, 47, 11787.	4.1	82
94	Acylation of Grignard reagents mediated by N-methylpyrrolidone: A remarkable selectivity for the synthesis of ketones. Organic and Biomolecular Chemistry, 2011, 9, 5365.	2.8	23
95	Efficient synthesis of carbonyl compounds: oxidation of azides and alcohols catalyzed by vanadium pentoxide in water using tert-butylhydroperoxide. Tetrahedron, 2011, 67, 8544-8551.	1.9	55
96	Catalystâ€Free Regio―and Stereospecific Synthesis of βâ€Sulfonamido Dithiocarbamates: Efficient Ringâ€Opening Reactions of <i>N</i> â€Tosyl Aziridines by Dialkyldithiocarbamates. Chemistry - A European Journal, 2011, 17, 6922-6925.	3.3	19
97	An Efficient Oxidation of Primary Azides Catalyzed by Copper Iodide: A Convenient Method for the Synthesis of Nitriles. Angewandte Chemie - International Edition, 2010, 49, 6622-6625.	13.8	85
98	A chemoselective aerobic oxidation of benzylic azides catalyzed by molybdenum xanthate in an aqueous medium. Tetrahedron Letters, 2008, 49, 4526-4530.	1.4	36
99	A convenient method for the synthesis of substituted thioureas. Tetrahedron Letters, 2007, 48, 7151-7154.	1.4	44
100	Tetrathiomolybdate Assisted Epoxide Ring Opening with Masked Thiolates and Selenoates: Multistep Reactions in One Pot ChemInform, 2003, 34, no.	0.0	0
101	Selective Reduction of Anomeric Azides to Amines with Tetrathiomolybdate: Synthesis of \hat{l}^2 -d-Glycosylamines. Journal of Organic Chemistry, 2003, 68, 5261-5264.	3.2	30
102	Tetrathiomolybdate Assisted Epoxide Ring Opening with Masked Thiolates and Selenoates:Â Multistep Reactions in One Pot. Journal of Organic Chemistry, 2002, 67, 9417-9420.	3.2	42
103	A Tandem Sulfur Transfer/Reduction/Michael Addition Mediated by Benzyltriethylammonium Tetrathiomolybdate. Angewandte Chemie - International Edition, 2000, 39, 4316-4319.	13.8	43