James L Manley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6386838/publications.pdf

Version: 2024-02-01

4535 2795 32,960 264 94 171 citations h-index g-index papers 271 271 271 25748 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 3855-3859.	3.3	1,329
2	Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Reviews Molecular Cell Biology, 2009, 10, 741-754.	16.1	1,037
3	HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010, 463, 364-368.	13.7	962
4	Alternative polyadenylation of mRNA precursors. Nature Reviews Molecular Cell Biology, 2017, 18, 18-30.	16.1	848
5	Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 2000, 408, 111-115.	13.7	714
6	Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes and Development, 2010, 24, 2343-2364.	2.7	697
7	Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in Genomic Instability. Cell, 2005, 122, 365-378.	13.5	655
8	Mechanisms and Consequences of Alternative Polyadenylation. Molecular Cell, 2011, 43, 853-866.	4.5	626
9	Protein–protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature, 1994, 368, 119-124.	13.7	594
10	The RNA polymerase II CTD coordinates transcription and RNA processing. Genes and Development, 2012, 26, 2119-2137.	2.7	513
11	Transcriptional repression of eukaryotic promoters. Cell, 1989, 59, 405-408.	13.5	512
12	A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell, 1990, 62, 25-34.	13.5	486
13	A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nature Genetics, 2003, 34, 460-463.	9.4	483
14	The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell, 1989, 59, 1165-1177.	13.5	482
15	Recognition of Trimethylated Histone H3 Lysine 4 Facilitates the Recruitment of Transcription Postinitiation Factors and Pre-mRNA Splicing. Molecular Cell, 2007, 28, 665-676.	4.5	478
16	Molecular Architecture of the Human Pre-mRNA 3′ Processing Complex. Molecular Cell, 2009, 33, 365-376.	4.5	475
17	RNA polymerase II and the integration of nuclear events. Genes and Development, 2000, 14, 1415-1429.	2.7	453
18	Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature, 2006, 444, 953-956.	13.7	387

#	Article	IF	CITATIONS
19	The Polyadenylation Factor CstF-64 Regulates Alternative Processing of IgM Heavy Chain Pre-mRNA during B Cell Differentiation. Cell, 1996, 87, 941-952.	13.5	381
20	Synergistic activation and repression of transcription by Drosophila homeobox proteins. Cell, 1989, 56, 573-583.	13.5	369
21	Primary structure of the human splicing factor asf reveals similarities with drosophila regulators. Cell, 1991, 66, 373-382.	13.5	364
22	R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes and Development, 2011, 25, 2041-2056.	2.7	361
23	RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 1998, 395, 93-96.	13.7	329
24	ASF/SF2-Regulated CaMKIIδ Alternative Splicing Temporally Reprograms Excitation-Contraction Coupling in Cardiac Muscle. Cell, 2005, 120, 59-72.	13.5	315
25	[35] In Vitro transcription: Whole-cell extract. Methods in Enzymology, 1983, 101, 568-582.	0.4	309
26	Alternative cleavage and polyadenylation: the long and short of it. Trends in Biochemical Sciences, 2013, 38, 312-320.	3.7	297
27	Symplekin and xGLD-2 Are Required for CPEB-Mediated Cytoplasmic Polyadenylation. Cell, 2004, 119, 641-651.	13.5	295
0.0			
28	The ends of the affair: capping and polyadenylation., 2000, 7, 838-842.		286
29	The ends of the affair: capping and polyadenylation. , 2000, 7, 838-842. Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269.	2.7	286
		2.7	
29	Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature, 1997, 389,		280
30	Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature, 1997, 389, 399-402.	13.7	280
29 30 31	Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature, 1997, 389, 399-402. Misregulation of Pre-mRNA Alternative Splicing in Cancer. Cancer Discovery, 2013, 3, 1228-1237. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins): Table 1 Genes	13.7 7.7	280 274 265
29 30 31 32	Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature, 1997, 389, 399-402. Misregulation of Pre-mRNA Alternative Splicing in Cancer. Cancer Discovery, 2013, 3, 1228-1237. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins): Table 1 Genes and Development, 2010, 24, 1073-1074. Cell signalling and the control of pre-mRNA splicing. Nature Reviews Molecular Cell Biology, 2004, 5,	13.7 7.7 2.7	280 274 265 262
30 31 32 33	Transcription termination by nuclear RNA polymerases. Genes and Development, 2009, 23, 1247-1269. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature, 1997, 389, 399-402. Misregulation of Pre-mRNA Alternative Splicing in Cancer. Cancer Discovery, 2013, 3, 1228-1237. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins): Table 1 Genes and Development, 2010, 24, 1073-1074. Cell signalling and the control of pre-mRNA splicing. Nature Reviews Molecular Cell Biology, 2004, 5, 727-738. The TET Family of Proteins: Functions and Roles in Disease. Journal of Molecular Cell Biology, 2009, 1,	13.7 7.7 2.7 16.1	280 274 265 262 257

#	Article	IF	CITATIONS
37	The end of the message: multiple protein–RNA interactions define the mRNA polyadenylation site. Genes and Development, 2015, 29, 889-897.	2.7	226
38	Phosphorylation of CPEB by Eg2 Mediates the Recruitment of CPSF into an Active Cytoplasmic Polyadenylation Complex. Molecular Cell, 2000, 6, 1253-1259.	4.5	225
39	Complex Protein Interactions within the Human Polyadenylation Machinery Identify a Novel Component. Molecular and Cellular Biology, 2000, 20, 1515-1525.	1.1	220
40	Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3' End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation. PLoS Genetics, 2015, 11, e1005166.	1.5	217
41	Why Is p53 Acetylated?. Cell, 2001, 107, 815-818.	13.5	215
42	Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell, 1988, 52, 731-742.	13.5	204
43	Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature, 2004, 427, 553-558.	13.7	202
44	Levels of Polyadenylation Factor CstF-64 Control IgM Heavy Chain mRNA Accumulation and Other Events Associated with B Cell Differentiation. Molecular Cell, 1998, 2, 761-771.	4.5	201
45	Sequence specificity of the human mRNA N6-adenosine methylasein vitro. Nucleic Acids Research, 1990, 18, 5735-5741.	6.5	200
46	Determinants of SR protein specificity. Current Opinion in Cell Biology, 1999, 11, 358-362.	2.6	199
47	Polyadenylation of mRNA precursors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 950, 1-12.	2.4	198
48	Splicing-related catalysis by protein-free snRNAs. Nature, 2001, 413, 701-707.	13.7	197
49	The BARD1-CstF-50 Interaction Links mRNA 3′ End Formation to DNA Damage and Tumor Suppression. Cell, 2001, 104, 743-753.	13.5	196
50	The Protein Kinase Clk/Sty Directly Modulates SR Protein Activity: Both Hyper- and Hypophosphorylation Inhibit Splicing. Molecular and Cellular Biology, 1999, 19, 6991-7000.	1.1	194
51	CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA $3\hat{a}$ erocessing. Genes and Development, 2014, 28, 2370-2380.	2.7	193
52	Autoubiquitination of the BRCA1·BARD1 RING Ubiquitin Ligase. Journal of Biological Chemistry, 2002, 277, 22085-22092.	1.6	189
53	Turning on a Fuel Switch of Cancer: hnRNP Proteins Regulate Alternative Splicing of Pyruvate Kinase mRNA. Cancer Research, 2010, 70, 8977-8980.	0.4	189
54	Human Tra2 Proteins Are Sequence-Specific Activators of Pre-mRNA Splicing. Cell, 1998, 93, 139-148.	13.5	186

#	Article	IF	Citations
55	The SR Protein SRp38 Represses Splicing in M Phase Cells. Cell, 2002, 111, 407-417.	13.5	179
56	Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: Creation of an SRp40-specific splicing enhancer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1148-1153.	3.3	177
57	Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 2009, 458, 784-788.	13.7	177
58	RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes and Development, 2017, 31, 1509-1528.	2.7	177
59	Base pairing between U2 and U6 snRNAs is necessary for splicing of a mammalian pre-mRNA. Nature, 1991, 352, 818-821.	13.7	176
60	Disease-associated mutation in <i>SRSF2</i> misregulates splicing by altering RNA-binding affinities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4726-34.	3.3	175
61	Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO Journal, 1998, 17, 6359-6367.	3.5	169
62	hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Human Molecular Genetics, 2007, 16, 3149-3159.	1.4	164
63	Primary structure and expression of bovine poly(A) polymerase. Nature, 1991, 353, 229-234.	13.7	160
64	The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65–Prp19 complex. Genes and Development, 2011, 25, 972-983.	2.7	159
65	Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease. Rna, 2004, 10, 565-573.	1.6	154
66	Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature, 1996, 384, 282-285.	13.7	153
67	Functional Interaction of BRCA1-Associated BARD1 with Polyadenylation Factor CstF-50. Science, 1999, 285, 1576-1579.	6.0	152
68	The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes and Development, 2007, 21, 1779-1789.	2.7	151
69	Pin1 modulates the structure and function of human RNA polymerase II. Genes and Development, 2003, 17, 2765-2776.	2.7	147
70	R Loops and Links to Human Disease. Journal of Molecular Biology, 2017, 429, 3168-3180.	2.0	147
71	Chromatin Binding of SRp20 and ASF/SF2 and Dissociation from Mitotic Chromosomes Is Modulated by Histone H3 Serine 10 Phosphorylation. Molecular Cell, 2009, 33, 450-461.	4.5	145
72	Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature, 2010, 467, 729-733.	13.7	144

#	Article	IF	CITATIONS
73	A polyadenylation factor subunit is the human homologue of theDrosophila suppressor of forked protein. Nature, 1994, 372, 471-474.	13.7	137
74	RNAP II CTD Phosphorylated on Threonine-4 Is Required for Histone mRNA 3′ End Processing. Science, 2011, 334, 683-686.	6.0	136
75	Cotranscriptional processes and their influence on genome stability. Genes and Development, 2006, 20, 1838-1847.	2.7	132
76	ASAP, a Novel Protein Complex Involved in RNA Processing and Apoptosis. Molecular and Cellular Biology, 2003, 23, 2981-2990.	1.1	131
77	Regulation of Plant Developmental Processes by a Novel Splicing Factor. PLoS ONE, 2007, 2, e471.	1.1	131
78	Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins. Genes and Development, 2002, 16, 594-607.	2.7	128
79	Strange bedfellows: polyadenylation factors at the promoter. Genes and Development, 2003, 17, 1321-1327.	2.7	127
80	BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted degradation of RNA polymerase II. Genes and Development, 2005, 19, 1227-1237.	2.7	126
81	Evolutionarily Conserved Interaction between CstF-64 and PC4 Links Transcription, Polyadenylation, and Termination. Molecular Cell, 2001, 7, 1013-1023.	4.5	125
82	An intronic element contributes to splicing repression in spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3426-3431.	3.3	123
83	Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1419-E1428.	3.3	121
84	Identification and Functional Characterization of Neo-Poly(A) Polymerase, an RNA Processing Enzyme Overexpressed in Human Tumors. Molecular and Cellular Biology, 2001, 21, 5614-5623.	1.1	120
85	Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes and Development, 2005, 19, 2705-2714.	2.7	120
86	The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO Journal, 2010, 29, 1235-1247.	3.5	117
87	The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 755-760.	3.3	116
88	SUMOylation Is an Inhibitory Constraint that Regulates the Prion-like Aggregation and Activity of CPEB3. Cell Reports, 2015, 11, 1694-1702.	2.9	116
89	Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate <i>VEGFR2</i> in breast cancer cells. Genes and Development, 2015, 29, 1298-1315.	2.7	115
90	Regulation of pre-mRNA splicing in metazoa. Current Opinion in Genetics and Development, 1997, 7, 205-211.	1.5	109

#	Article	IF	Citations
91	A Complex Signaling Pathway Regulates SRp38 Phosphorylation and Pre-mRNA Splicing in Response to Heat Shock. Molecular Cell, 2007, 28, 79-90.	4.5	108
92	Splicing pathways of SV40 mRNAs in X. laevis oocytes differ in their requirements for snRNPs. Cell, 1984, 37, 927-936.	13.5	107
93	TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6030-6035.	3.3	104
94	U1 snRNP-ASF/SF2 interaction and $5\hat{a}\in^2$ splice site recognition: characterization of required elements. Nucleic Acids Research, 1995, 23, 3260-3267.	6.5	103
95	Splicing of SV40 early pre-mRNA to large T and small t mRNAs utilizes different patterns of lariat branch sites. Cell, 1987, 50, 227-236.	13.5	99
96	Transcriptional Activators Enhance Polyadenylation of mRNA Precursors. Molecular Cell, 2011, 41, 409-418.	4.5	98
97	Structural and biochemical studies of the $5\hat{a}\in 2\hat{a}\dagger 3\hat{a}\in 2$ exoribonuclease Xrn1. Nature Structural and Molecular Biology, 2011, 18, 270-276.	3.6	98
98	An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes and Development, 2017, 31, 1257-1271.	2.7	98
99	Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. Nucleic Acids Research, 1993, 21, 2815-2822.	6.5	97
100	PP1/PP2A Phosphatases Are Required for the Second Step of Pre-mRNA Splicing and Target Specific snRNP Proteins. Molecular Cell, 2006, 23, 819-829.	4.5	96
101	Terminating the transcript: breaking up is hard to do. Genes and Development, 2006, 20, 1050-1056.	2.7	96
102	Synthesis and degradation of termination and premature-termination fragments of \hat{l}^2 -galactosidase in vitro and in vivo. Journal of Molecular Biology, 1978, 125, 407-432.	2.0	93
103	Accurate and specific polyadenylation of mRNA precursors in a soluble whole-cell lysate. Cell, 1983, 33, 595-605.	13.5	93
104	Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO Journal, 1998, 17, 1053-1062.	3.5	93
105	Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nature Structural and Molecular Biology, 2012, 19, 346-354.	3.6	93
106	A CCAAT box sequence in the adenovirus major late promoter functions as part of an RNA polymerase II termination signal. Cell, 1989, 57, 561-571.	13.5	91
107	Interaction between a transcriptional activator and transcription factor IIB in vivo. Nature, 1993, 362, 549-553.	13.7	91
108	A complex protein assembly catalyzes polyadenylation of mRNA precursors. Current Opinion in Genetics and Development, 1995, 5, 222-228.	1.5	91

#	Article	IF	Citations
109	XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genetics, 2016, 12, e1006107.	1.5	88
110	SRp38 Regulates Alternative Splicing and Is Required for Ca2+ Handling in the Embryonic Heart. Developmental Cell, 2009, 16, 528-538.	3.1	86
111	A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes and Development, 2013, 27, 2227-2232.	2.7	86
112	Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nature Structural and Molecular Biology, 2008, 15, 1040-1048.	3.6	85
113	Transcriptome analysis of alternative splicing events regulated by SRSF10 reveals position-dependent splicing modulation. Nucleic Acids Research, 2014, 42, 4019-4030.	6.5	84
114	Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Molecular Cell, 2019, 76, 82-95.e7.	4.5	84
115	Crystal Structure of Murine CstF-77: Dimeric Association and Implications for Polyadenylation of mRNA Precursors. Molecular Cell, 2007, 25, 863-875.	4.5	83
116	SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes and Development, 2010, 24, 1242-1252.	2.7	80
117	Repression of simian virus 40 early transcription by viral DNA replication in human 293 cells. Nature, 1985, 317, 172-175.	13.7	79
118	The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO Journal, 2005, 24, 1009-1020.	3.5	77
119	RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3′ UTRs. Genes and Development, 2014, 28, 2248-2260.	2.7	76
120	Generation and functional analyses for base-substitution mutants of the adenovirus 2 major late promoter. Nucleic Acids Research, 1984, 12, 9309-9321.	6.5	75
121	Delineating the Structural Blueprint of the Pre-mRNA 3′-End Processing Machinery. Molecular and Cellular Biology, 2014, 34, 1894-1910.	1.1	75
122	Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes and Development, 2007, 21, 2950-2962.	2.7	74
123	TLS Inhibits RNA Polymerase III Transcription. Molecular and Cellular Biology, 2010, 30, 186-196.	1.1	74
124	A human homologue of the Escherichia coli DnaJ heatshock protein. Nucleic Acids Research, 1991, 19, 6645-6645.	6.5	73
125	PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock. Molecular Cell, 2013, 49, 7-17.	4.5	68
126	A nuclear micrococcal-sensitive, ATP-dependent exoribonuclease degrades uncapped but not capped RNA substratesx. Nucleic Acids Research, 1991, 19, 2685-2692.	6.5	67

#	Article	IF	CITATIONS
127	RNA synthesis in isolated nuclei: Identification and comparison of adenovirus 2 encoded transcripts synthesized in vitro and in vivo. Journal of Molecular Biology, 1979, 135, 171-197.	2.0	66
128	RNA synthesis in isolated nuclei. Journal of Molecular Biology, 1982, 159, 581-599.	2.0	65
129	Cooperation between core promoter elements influences transcriptional activity in vivo Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1955-1959.	3.3	65
130	Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Research, 1996, 24, 4281-4288.	6.5	65
131	Characterization of the catalytic activity of U2 and U6 snRNAs. Rna, 2003, 9, 892-904.	1.6	65
132	The Prolyl Isomerase Pin1 Functions in Mitotic Chromosome Condensation. Molecular Cell, 2007, 26, 287-300.	4.5	65
133	Structure and function of the S1 nuclease-sensitive site in the adenovirus late promoter. Cell, 1986, 45, 743-751.	13.5	62
134	Physical and functional interactions between Drosophila TRAF2 and Pelle kinase contribute to Dorsal activation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8596-8601.	3.3	62
135	Regulation and Substrate Specificity of the SR Protein Kinase Clk/Sty. Molecular and Cellular Biology, 2003, 23, 4139-4149.	1.1	61
136	Nucleotide Binding by the MDM2 RING Domain Facilitates Arf-Independent MDM2 Nucleolar Localization. Molecular Cell, 2003, 12, 875-887.	4.5	60
137	TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes and Development, 2018, 32, 1161-1174.	2.7	60
138	Ectopic expression of the Drosophila tramtrack gene results in multiple embryonic defects, including repression of even-skipped and fushi tarazu. Mechanisms of Development, 1992, 38, 183-195.	1.7	57
139	The human papillomavirus type 16 negative regulatory RNA element interacts with three proteins that act at different posttranscriptional levels. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4677-4682.	3.3	56
140	RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance. Non-coding RNA, 2018, 4, 8.	1.3	56
141	Synthesis in vitro of an exceptionally long RNA transcript promoted by an Alul sequence. Nature, 1982, 300, 376-379.	13.7	55
142	Even-skipped Represses Transcription by Binding TATA Binding Protein and Blocking the TFIID-TATA Box Interaction. Molecular and Cellular Biology, 1998, 18, 3771-3781.	1.1	55
143	Requirements of the RNA Polymerase II C-Terminal Domain for Reconstituting Pre-mRNA 3′ Cleavage. Molecular and Cellular Biology, 2002, 22, 1684-1692.	1.1	55
144	SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors. Cell Reports, 2016, 17, 1990-2003.	2.9	55

#	Article	IF	CITATIONS
145	Analysis of the Expression of Genes Encoding Animal mRNA by in Vitro Techniques. Progress in Molecular Biology and Translational Science, 1983, 30, 195-244.	1.9	54
146	The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability. Rna, 2007, 13, 2108-2115.	1.6	53
147	A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes and Development, 2009, 23, 1364-1377.	2.7	53
148	Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. ELife, 2018, 7, .	2.8	53
149	In vitrosplicing of simian virus 40 early pre mRNA. Nucleic Acids Research, 1986, 14, 1219-1235.	6.5	52
150	Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes and Development, 2008, 22, 499-511.	2.7	51
151	Sumoylation Modulates the Assembly and Activity of the Pre-mRNA 3′ Processing Complex. Molecular and Cellular Biology, 2007, 27, 8848-8858.	1.1	50
152	Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes and Development, 2012, 26, 350-355.	2.7	49
153	Deregulation of Poly(A) Polymerase Interferes with Cell Growth. Molecular and Cellular Biology, 1998, 18, 5010-5020.	1.1	47
154	The search for alternative splicing regulators: new approaches offer a path to a splicing code. Genes and Development, 2008, 22, 279-285.	2.7	46
155	Function and Control of RNA Polymerase II C-Terminal Domain Phosphorylation in Vertebrate Transcription and RNA Processing. Molecular and Cellular Biology, 2014, 34, 2488-2498.	1.1	46
156	ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes and Development, 2020, 34, 785-805.	2.7	46
157	The End of the MessageAnother Link Between Yeast and Mammals. Science, 1996, 274, 1481-1482.	6.0	45
158	Nuclear coupling: RNA processing reaches back to transcription. , 2002, 9, 790-791.		45
159	The 3' processing factor CstF functions in the DNA repair response. Nucleic Acids Research, 2008, 36, 1792-1804.	6.5	44
160	Mdm2 and MdmX as Regulators of Gene Expression. Genes and Cancer, 2012, 3, 264-273.	0.6	43
161	The C-Terminal Domain of RNA Polymerase II Functions as a Phosphorylation-Dependent Splicing Activator in a Heterologous Protein. Molecular and Cellular Biology, 2005, 25, 533-544.	1.1	42
162	Robust mRNA Transcription in Chicken DT40 Cells Depleted of TAF II 31 Suggests Both Functional Degeneracy and Evolutionary Divergence. Molecular and Cellular Biology, 2000, 20, 5064-5076.	1.1	41

#	Article	IF	CITATIONS
163	RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. ELife, 2014, 3, e02112.	2.8	41
164	Structural Basis for Dimerization and Activity of Human PAPD1, a Noncanonical Poly(A) Polymerase. Molecular Cell, 2011, 41, 311-320.	4.5	40
165	An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes and Development, 2012, 26, 2265-2270.	2.7	40
166	The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity. Nature Communications, 2012, 3, 946.	5.8	40
167	Comparative analysis of alternative polyadenylation in <i>S. cerevisiae</i> and <i>S. pombe</i> Genome Research, 2017, 27, 1685-1695.	2.4	40
168	Creatine Phosphate, Not ATP, Is Required for 3′ End Cleavage of Mammalian Pre-mRNA in Vitro. Journal of Biological Chemistry, 1997, 272, 29636-29642.	1.6	39
169	Heterozygous Disruption of the TATA-Binding Protein Gene in DT40 Cells Causes Reduced cdc25B Phosphatase Expression and Delayed Mitosis. Molecular and Cellular Biology, 2001, 21, 2435-2448.	1.1	39
170	Hsp27 Enhances Recovery of Splicing as well as Rephosphorylation of SRp38 after Heat Shock. Molecular Biology of the Cell, 2006, 17, 886-894.	0.9	39
171	DNA-Protein complexes spread on N2-discharged carbon film and characterized by molecular weight and its projected distribution. Journal of Molecular Biology, 1982, 160, 375-386.	2.0	38
172	A tertiary interaction detected in a human U2-U6 snRNA complex assembled in vitro resembles a genetically proven interaction in yeast. Rna, 2000, 6, 206-219.	1.6	38
173	Tehao functions in the Toll pathway in Drosophila melanogaster: possible roles in development and innate immunity. Insect Molecular Biology, 2001, 10, 457-464.	1.0	38
174	The Mammalian RNA Polymerase II C-Terminal Domain Interacts with RNA to Suppress Transcription-Coupled 3′ End Formation. Molecular Cell, 2005, 20, 91-103.	4.5	38
175	Sub1 Functions in Osmoregulation and in Transcription by both RNA Polymerases II and III. Molecular and Cellular Biology, 2009, 29, 2308-2321.	1.1	38
176	Protein-free spliceosomal snRNAs catalyze a reaction that resembles the first step of splicing. Rna, 2007, 13, 2300-2311.	1.6	37
177	Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13994-13999.	3.3	36
178	Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Research, 2014, 42, 4996-5006.	6.5	36
179	Far upstream element-binding protein 1 and RNA secondary structure both mediate second-step splicing repression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2687-95.	3.3	35
180	ALS mutations in TLS/FUS disrupt target gene expression. Genes and Development, 2015, 29, 1696-1706.	2.7	35

#	Article	IF	CITATIONS
181	Multiple Properties of the Splicing Repressor SRp38 Distinguish It from Typical SR Proteins. Molecular and Cellular Biology, 2005, 25, 8334-8343.	1.1	34
182	C9orf72 and triplet repeat disorder RNAs: G-quadruplex formation, binding to PRC2 and implications for disease mechanisms. Rna, 2019, 25, 935-947.	1.6	34
183	SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy, 2021, 17, 1889-1906.	4.3	34
184	Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nature Communications, 2020, 11 , 3182 .	5.8	34
185	Pelle kinase is activated by autophosphorylation during Toll signaling in (i>Drosophila (i). Development (Cambridge), 2002, 129, 1925-1933.	1.2	34
186	Splicing of mRNA precursors: the role of RNAs and proteins in catalysis. Molecular BioSystems, 2009, 5, 311.	2.9	33
187	From Transcription to mRNA: PAF Provides a New Path. Molecular Cell, 2005, 20, 167-168.	4.5	32
188	MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD. Molecular Cell, 2017, 68, 913-925.e3.	4.5	32
189	Poly(A) Polymerase Phosphorylation Is Dependent on Novel Interactions with Cyclins. Molecular and Cellular Biology, 2000, 20, 5310-5320.	1.1	31
190	The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene. Nucleic Acids Research, 2000, 28, 520-526.	6.5	31
191	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
192	The RNA polymerase II CTD "orphan―residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Transcription, 2018, 9, 30-40.	1.7	30
193	Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains. Genome Research, 2020, 30, 1705-1715.	2.4	30
194	Core Promoter Elements and TAFs Contribute to the Diversity of Transcriptional Activation in Vertebrates. Molecular and Cellular Biology, 2003, 23, 7350-7362.	1.1	29
195	Messenger RNA polyadenylylation: a universal modification Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1800-1801.	3.3	28
196	Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. Rna, 2007, 13, 1546-1557.	1.6	28
197	Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1216-1221.	3.3	28
198	Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3' splice sites Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3338-3342.	3.3	27

#	Article	IF	CITATIONS
199	Human capping enzyme promotes formation of transcriptional R loops in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17620-17625.	3.3	26
200	Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11924-11931.	3.3	26
201	Roles of Sumoylation in mRNA Processing and Metabolism. Advances in Experimental Medicine and Biology, 2017, 963, 15-33.	0.8	26
202	The <i>C9ORF72</i> Gene, Implicated in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, Encodes a Protein That Functions in Control of Endothelin and Glutamate Signaling. Molecular and Cellular Biology, 2018, 38, .	1.1	26
203	SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
204	New Talents for an Old Acquaintance: the SR Protein Splicing Factor ASF/SF2 Functions in the Maintenance of Genome Stability. Cell Cycle, 2005, 4, 1706-1708.	1.3	25
205	Sub1 Globally Regulates RNA Polymerase II C-Terminal Domain Phosphorylation. Molecular and Cellular Biology, 2010, 30, 5180-5193.	1.1	25
206	Sumoylation controls the timing of Tup1-mediated transcriptional deactivation. Nature Communications, 2015, 6, 6610.	5.8	25
207	Allosteric Regulation of Even-skipped Repression Activity by Phosphorylation. Molecular Cell, 1999, 3, 77-86.	4.5	24
208	Intrinsic metal binding by a spliceosomal RNA. Nature Structural Biology, 2002, 9, 498-499.	9.7	23
209	MdmX Is Required for p53 Interaction with and Full Induction of the <i>Mdm2</i> Promoter after Cellular Stress. Molecular and Cellular Biology, 2012, 32, 1214-1225.	1.1	23
210	The RNA polymerase C-terminal domain. Transcription, 2011, 2, 221-225.	1.7	22
211	Transcription of methylated eukaryotic viral genes in a solublein vitrosystem. Nucleic Acids Research, 1984, 12, 4715-4730.	6.5	21
212	SELEX to Identify Protein-Binding Sites on RNA. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072934-pdb.prot072934.	0.2	21
213	Chromosomal Localization of Mouse and Human Genes Encoding the Splicing Factors ASF/SF2 (SFRS1) and SC-35 (SFRS2). Genomics, 1995, 29, 70-79.	1.3	20
214	Oligonudeotide-targeted degradation of U1 and U2 snRNAs reveals differential interactions of simian virus 40 pre-mRNAs with snRNPs. Nucleic Acids Research, 1989, 17, 6553-6568.	6.5	18
215	In Vivo Functional Analysis of the Histone 3-like TAF9 and a TAF9-related Factor, TAF9L. Journal of Biological Chemistry, 2003, 278, 35172-35183.	1.6	17
216	Chain termination and inhibition of mammalian poly(A) polymerase by modified ATP analogues. Biochemical Pharmacology, 2010, 79, 669-677.	2.0	16

#	Article	IF	CITATIONS
217	Synthesis of internal re-initiation fragments of \hat{l}^2 -galactosidase in vitro and in vivo. Journal of Molecular Biology, 1978, 125, 449-466.	2.0	15
218	Pinning Down Transcription: Regulation of RNA Polymerase II Activity During the Cell Cycle. Cell Cycle, 2004, 3, 430-433.	1.3	15
219	Heat Shock-Induced SRSF10 Dephosphorylation Displays Thermotolerance Mediated by Hsp27. Molecular and Cellular Biology, 2011, 31, 458-465.	1.1	15
220	NRDE-2, the human homolog of fission yeast Nrl1, prevents DNA damage accumulation in human cells. RNA Biology, 2018, 15, 868-876.	1.5	15
221	Suppression of amber mutants in vitro induced by low temperature. Journal of Molecular Biology, 1978, 125, 433-447.	2.0	14
222	TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1. Rna, 2019, 25, 1497-1508.	1.6	14
223	RNA polymerase II terminates transcriptionin vitroin the SV40 origin region. Nucleic Acids Research, 1987, 15, 4417-4436.	6.5	13
224	Functions of SR and Tra2 Proteins in Pre-mRNA Splicing Regulation. Experimental Biology and Medicine, 1999, 220, 59-63.	1.1	13
225	Trypanosoma cruzi TcSRPK, the first protozoan member of the SRPK family, is biochemically and functionally conserved with metazoan SR protein-specific kinases. Molecular and Biochemical Parasitology, 2003, 127, 9-21.	0.5	13
226	New Insights into Mitotic Chromosome Condensation: A Role for the Prolyl Isomerase Pin1. Cell Cycle, 2007, 6, 2896-2901.	1.3	13
227	TLS/FUS. Cell Cycle, 2012, 11, 3349-3350.	1.3	13
228	New Links between mRNA Polyadenylation and Diverse Nuclear Pathways. Molecules and Cells, 2014, 37, 644-649.	1.0	13
229	Question of commitment. Nature, 1993, 365, 14-14.	13.7	12
230	Transcriptional activators enhance polyadenylation of mRNA precursors. RNA Biology, 2011, 8, 964-967.	1.5	10
231	Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development (Cambridge), 2002, 129, 1925-33.	1.2	10
232	Tumor metabolism: hnRNP proteins get in on the act. Cell Cycle, 2010, 9, 1863-1864.	1.3	9
233	Alternative Polyadenylation Blooms. Developmental Cell, 2010, 18, 172-174.	3.1	9
234	SETX sumoylation. Rare Diseases (Austin, Tex), 2014, 2, e27744.	1.8	9

#	Article	IF	CITATIONS
235	Replication protein A associates with nucleolar R loops and regulates rRNA transcription and nucleolar morphology. Genes and Development, 2021, 35, 1579-1594.	2.7	9
236	Cell-free synthesis of SU+III tyrosyl transfer RNA: Characterization of the 4S product. Archives of Biochemistry and Biophysics, 1973, 157, 50-54.	1.4	8
237	A UV-crosslinkable interaction in human U6 snRNA. Rna, 1998, 4, 489-497.	1.6	8
238	Alternative Splicing and Control of Apoptotic DNA Fragmentation. Cell Cycle, 2006, 5, 1286-1288.	1.3	8
239	The use of simple model systems to study spliceosomal catalysis. Rna, 2009, 15, 4-7.	1.6	8
240	How bidirectional becomes unidirectional. Nature Structural and Molecular Biology, 2013, 20, 1022-1024.	3.6	8
241	Mtr4/ZFC3H1 protects polysomes through nuclear RNA surveillance. Cell Cycle, 2017, 16, 1999-2000.	1.3	8
242	Burkitt lymphoma-related <i>TCF3</i> mutations alter TCF3 alternative splicing by disrupting hnRNPH1 binding. RNA Biology, 2020, 17, 1383-1390.	1.5	8
243	In Vitro Sumoylation of Recombinant Proteins and Subsequent Purification for Use in Enzymatic Assays. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5121.	0.2	7
244	SV40 T-antigen-binding sites within the 5′-flanking regions of human U1 and U2 genes. Gene, 1991, 109, 219-231.	1.0	6
245	Variations in Intracellular Levels of TATA Binding Protein Can Affect Specific Genes by Different Mechanisms. Molecular and Cellular Biology, 2008, 28, 83-92.	1.1	5
246	Factors That Influence Alternative Splice Site Selection in Vitro., 1987,, 97-112.		5
247	On the nature of \hat{l}^2 -galactosidase synthesized by the DNA-directed cell-free system. Molecular Genetics and Genomics, 1973, 120, 301-308.	2.4	4
248	Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription, 2021, 12, 277-293.	1.7	4
249	Nuclear RNA transcript levels modulate nucleocytoplasmic distribution of ALS/FTD-associated protein FUS. Scientific Reports, 2022, 12, 8180.	1.6	4
250	Drosophila Pelle phosphorylates Dichaete protein andinfluences its subcellular distribution in developing oocytes. International Journal of Developmental Biology, 2010, 54, 1309-1315.	0.3	3
251	Multiple ways to a dead end: diverse mechanisms by which ALS mutant genes induce cell death. Cell Cycle, 2021, 20, 631-646.	1.3	3
252	Regulation of Nuclear Transport and Activity of the Drosophila Morphogen Dorsal. , 1995, , 243-265.		3

#	ARTICLE	IF	CITATIONS
253	Emerging Roles for SUMO in mRNA Processing and Metabolism. , 2009, , 41-57.		2
254	cFLIP expression is altered in severe corticosteroid-resistant asthma. Genomics Data, 2014, 2, 99-104.	1.3	1
255	A journey to the end of the message. Rna, 2015, 21, 538-540.	1.6	1
256	In Vitro Polyadenylation of SV40 Early Pre-mRNA. , 1987, , 101-118.		1
257	The Role of Alternative Splicing During the Cell Cycle and Programmed Cell Death. , 2010, , 2329-2333.		0
258	Transcription mRNA Polyadenylation in Eukaryotes. , 2021, , 443-448.		0
259	Role of Alternative Splicing During the Cell Cycle and Programmed Cell Death. , 2003, , 331-334.		0
260	In Vitro Analysis of Transcriptional Activators and Polyadenylation. Methods in Molecular Biology, 2014, 1125, 65-74.	0.4	0
261	TRANSCRIPTION OF ANIMAL VIRUS GENES IN VITRO1. , 1980, , 361-378.		0
262	SYNTHESIS OF ADENOVIRUS 2 RNA in vitro: PROPERTIES OF THE MAJOR LATER TRANSCRIPT AND ITS PROMOTER. , 1980 , , $353-367$.		0
263	The Mechanism and Control of Pre-mRNA Splicing. , 1989, , 243-261.		0
264	Transcriptional control of Drosophila embryogenesis. Molecular Aspects of Cellular Regulation, 1991, , 449-469.	1.4	0