Liya Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6386724/publications.pdf

Version: 2024-02-01

430754 330025 1,494 40 18 37 citations h-index g-index papers 41 41 41 1906 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Atomic structure of the predominant GII.4 human norovirus capsid reveals novel stability and plasticity. Nature Communications, 2022, 13, 1241.	5.8	19
2	NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nature Cell Biology, 2022, 24, 737-747.	4.6	19
3	Novel fold of rotavirus glycan-binding domain predicted by AlphaFold2 and determined by X-ray crystallography. Communications Biology, 2022, 5, 419.	2.0	10
4	Esomeprazole covalently interacts with the cardiovascular enzyme dimethylarginine dimethylaminohydrolase: Insights into the cardiovascular risk of proton pump inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130149.	1,1	1
5	Cryo-EM Structure of Rotavirus VP3 Reveals Novel Insights into Its Role in RNA Capping and Endogenous Transcription. Springer Proceedings in Materials, 2021, , 211-220.	0.1	O
6	Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 \hat{l}^2 -lactamase. Journal of Biological Chemistry, 2021, 296, 100799.	1.6	14
7	Reoviruses (Reoviridae) and Their Structural Relatives. , 2021, , 303-317.		1
8	Broadly cross-reactive human antibodies that inhibit genogroup I and II noroviruses. Nature Communications, 2021, 12, 4320.	5. 8	21
9	Structural basis of the stereoselective formation of the spirooxindole ring in the biosynthesis of citrinadins. Nature Communications, 2021, 12, 4158.	5 . 8	17
10	Glycan Recognition in Human Norovirus Infections. Viruses, 2021, 13, 2066.	1.5	15
11	Norovirus Protease Structure and Antivirals Development. Viruses, 2021, 13, 2069.	1.5	3
12	Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of <i>Escherichia coli</i> Producing OXA-48. ACS Infectious Diseases, 2021, 7, 3345-3354.	1.8	3
13	High-Resolution Mapping of Human Norovirus Antigens via Genomic Phage Display Library Selections and Deep Sequencing. Journal of Virology, 2020, 95, .	1.5	10
14	Structure and mechanism of human diacylglycerol O-acyltransferaseÂ1. Nature, 2020, 581, 329-332.	13.7	72
15	Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infectious Diseases, 2020, 6, 1214-1227.	1.8	27
16	TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nature Communications, 2020, 11 , 547 .	5.8	20
17	Antagonism between substitutions in \hat{l}^2 -lactamase explains a path not taken in the evolution of bacterial drug resistance. Journal of Biological Chemistry, 2020, 295, 7376-7390.	1.6	14
18	2.7 Ã cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. Science Advances, 2020, 6, eaay6410.	4.7	16

#	Article	IF	CITATIONS
19	A drug-resistant \hat{l}^2 -lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. Journal of Biological Chemistry, 2020, 295, 18239-18255.	1.6	14
20	Influenza A Virus Protein NS1 Exhibits Strain-Independent Conformational Plasticity. Journal of Virology, 2019, 93, .	1.5	11
21	GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. Journal of Virology, 2019, 93, .	1.5	10
22	Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. Journal of Clinical Investigation, 2019, 129, 3839-3851.	3.9	32
23	Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nature Communications, 2018, 9, 5010.	5.8	130
24	Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12015-E12023.	3.3	39
25	Differential active site requirements for NDM-1 \hat{l}^2 -lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nature Communications, 2018, 9, 4524.	5.8	67
26	Reovirus Nonstructural Protein ${}^{\circ}\!f$ NS Acts as an RNA Stability Factor Promoting Viral Genome Replication. Journal of Virology, 2018, 92, .	1.5	17
27	Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5962-5967.	3.3	18
28	Glycan recognition in globally dominant human rotaviruses. Nature Communications, 2018, 9, 2631.	5.8	63
29	Strain-Specific Virolysis Patterns of Human Noroviruses in Response to Alcohols. PLoS ONE, 2016, 11, e0157787.	1.1	14
30	Multiple oligomeric structures of a bacterial small heat shock protein. Scientific Reports, 2016, 6, 24019.	1.6	28
31	Diversity in Rotavirus–Host Glycan Interactions: A "Sweet―Spectrum. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 263-273.	2.3	72
32	Structural Basis for 2′-5′-Oligoadenylate Binding and Enzyme Activity of a Viral RNase L Antagonist. Journal of Virology, 2015, 89, 6633-6645.	1.5	28
33	Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nature Communications, 2015, 6, 8346.	5.8	50
34	Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses. Molecular and Cellular Proteomics, 2014, 13, 2944-2960.	2.5	113
35	Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication. Journal of Virology, 2014, 88, 12866-12881.	1.5	29
36	Structural basis of glycan interaction in gastroenteric viral pathogens. Current Opinion in Virology, 2014, 7, 119-127.	2.6	32

#	Article	IF	CITATION
37	The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans. Journal of Virology, 2013, 87, 7255-7264.	1.5	74
38	Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5′ GG Sequence for RTPase Activity. Journal of Virology, 2012, 86, 10547-10557.	1.5	25
39	Rotavirus non-structural proteins: structure and function. Current Opinion in Virology, 2012, 2, 380-388.	2.6	63
40	Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 2012, 485, 256-259.	13.7	283