
Mario Chemnitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6386648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid soliton dynamics in liquid-core fibres. Nature Communications, 2017, 8, 42.	12.8	99
2	All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Optics Express, 2012, 20, 4484.	3.4	98
3	Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light: Science and Applications, 2017, 6, e17124-e17124.	16.6	74
4	Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy. Optics Express, 2012, 20, 26583.	3.4	63
5	Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics. Analytical Chemistry, 2013, 85, 6703-6715.	6.5	55
6	Carbon chloride-core fibers for soliton mediated supercontinuum generation. Optics Express, 2018, 26, 3221.	3.4	53
7	Thermodynamic control of soliton dynamics in liquid-core fibers. Optica, 2018, 5, 695.	9.3	46
8	Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber. Nano Letters, 2017, 17, 631-637.	9.1	34
9	Autonomous on-chip interferometry for reconfigurable optical waveform generation. Optica, 2021, 8, 1268.	9.3	22
10	Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids. Optics Express, 2017, 25, 22932.	3.4	20
11	Supercontinuum generation in a carbon disulfide core microstructured optical fiber. Optics Express, 2021, 29, 19891.	3.4	20
12	Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers. Optics Express, 2020, 28, 3097.	3.4	20
13	Higher-order mode supercontinuum generation in dispersion-engineered liquid-core fibers. Scientific Reports, 2021, 11, 5270.	3.3	18
14	Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers. Optics Express, 2016, 24, 16191.	3.4	17
15	Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers. Optics Letters, 2019, 44, 2236.	3.3	17
16	Third harmonic generation in exposed-core microstructured optical fibers. Optics Express, 2016, 24, 17860.	3.4	16
17	Generation and Processing of Complex Photon States With Quantum Frequency Combs. IEEE Photonics Technology Letters, 2019, 31, 1862-1865.	2.5	16
18	Low-loss deuterated organic solvents for visible and near-infrared photonics. Optical Materials Express. 2017. 7. 1122.	3.0	13

MARIO CHEMNITZ

#	Article	IF	CITATIONS
19	Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers. Optics Letters, 2020, 45, 2985.	3.3	13
20	Nanofilm-induced spectral tuning of third harmonic generation. Optics Letters, 2017, 42, 1812.	3.3	10
21	Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber. Optics Letters, 2019, 44, 626.	3.3	9
22	Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths. Optics Letters, 2016, 41, 5377.	3.3	7
23	Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers. Optics Letters, 2016, 41, 3519.	3.3	7
24	Essentials of resonance-enhanced soliton-based supercontinuum generation. Optics Express, 2020, 28, 2557.	3.4	6
25	Tailored Multiâ€Color Dispersive Wave Formation in Quasiâ€Phaseâ€Matched Exposed Core Fibers. Advanced Science, 2022, 9, e2103864.	11.2	6
26	Impact of deuteration on the ultrafast nonlinear optical response of toluene and nitrobenzene. Optics Express, 2019, 27, 29491.	3.4	5
27	Third-harmonic generation with tailored modes in liquid core fibers with geometric birefringence. Optics Letters, 2020, 45, 6859.	3.3	4
28	Soliton-based MIR generation until 2.4 $\hat{A}\mu m$ in a CS2-core step-index fiber. , 2015, , .		1
29	Wavelength shifted third harmonic generation in an exposed-core microstructured optical fiber. , 2017, , .		1
30	Localized temperature and pressure measurements inside CS ₂ -filled fiber using stimulated Brillouin scattering. , 2021, , .		1
31	Performance limits of single nano-object detection with optical fiber tapers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1833.	2.1	1
32	Towards telecom-compatible liquid-core fibers for low-power nonlinear signal processing. , 2021, , .		1
33	All-fiber laser source for CARS-microscopy. , 2013, , .		0
34	Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 Filled Liquid Core Fiber. , 2019, , .		0
35	Tailorable Supercontinuumc Generation in Liquid-Composite-Core Fibers. , 2019, , .		0
36	Higher-Order Mode Temperature-Tunable Supercontinuum Generation in Liquid-Core Optical Fibers. , 2019, , .		0

#	Article	IF	CITATIONS
37	Supercontinuum Generation in Optofluidic Microstructured Optical Fibers. , 2021, , .		0
38	Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber. , 2016, , .		0
39	Fibers with Liquid Cores: A New Way to Control Supercontinuum Generation and Soliton Dynamics. , 2018, , .		0
40	User-friendly, reconfigurable all-optical signal processing with integrated photonics. , 2022, , .		0