Jong Youl Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6386450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Temperature Management at 36°C Shows Therapeutic Effectiveness via Alteration of Microglial Activation and Polarization After Ischemic Stroke. Translational Stroke Research, 2022, 13, 132-141.	2.3	9
2	Reparative System Arising from CCR2(+) Monocyte Conversion Attenuates Neuroinflammation Following Ischemic Stroke. Translational Stroke Research, 2021, 12, 879-893.	2.3	11
3	Maintenance of the Neuroprotective Function of the Amino Group Blocked Fluorescence-Agmatine. Neurochemical Research, 2021, 46, 1933-1940.	1.6	6
4	Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects. Anatomy and Cell Biology, 2021, 54, 143-151.	0.5	7
5	Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Frontiers in Neuroscience, 2021, 15, 708547.	1.4	23
6	Monocyte Transmodulation: The Next Novel Therapeutic Approach in Overcoming Ischemic Stroke?. Frontiers in Neurology, 2020, 11, 578003.	1.1	14
7	Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6419.	1.8	31
8	Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells, 2020, 9, 2020.	1.8	43
9	The role of NOX inhibitors in neurodegenerative diseases. IBRO Reports, 2019, 7, 59-69.	0.3	58
10	Role of Agmatine on Neuroglia in Central Nervous System Injury. Brain & Neurorehabilitation, 2019, 12,	0.4	1
11	Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Experimental Neurobiology, 2019, 28, 85-103.	0.7	4
12	Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochemical Research, 2019, 44, 735-750.	1.6	30
13	Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Current Medicinal Chemistry, 2019, 26, 5430-5455.	1.2	19
14	The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opinion on Therapeutic Targets, 2018, 22, 191-199.	1.5	74
15	Assessment of Cognitive Impairment in a Mouse Model of High-Fat Diet-Induced Metabolic Stress with Touchscreen-Based Automated Battery System. Experimental Neurobiology, 2018, 27, 277-286.	0.7	15
16	Thermo-sensitive assembly of the biomaterial REP reduces hematoma volume following collagenase-induced intracerebral hemorrhage in rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1853-1862.	1.7	12
17	Hypothermia Identifies Dynamin as a Potential Therapeutic Target in Experimental Stroke. Therapeutic Hypothermia and Temperature Management, 2017, 7, 171-177.	0.3	9
18	M2 Phenotype Microglia-derived Cytokine Stimulates Proliferation and Neuronal Differentiation of Endogenous Stem Cells in Ischemic Brain. Experimental Neurobiology, 2017, 26, 33-41.	0.7	59

Jong Youl Kim

#	Article	IF	CITATIONS
19	NOX Inhibitors - A Promising Avenue for Ischemic Stroke. Experimental Neurobiology, 2017, 26, 195-205.	0.7	40
20	Suppression of MicroRNA <i>let-7a</i> Expression by Agmatine Regulates Neural Stem Cell Differentiation. Yonsei Medical Journal, 2016, 57, 1461.	0.9	9
21	Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Experimental Neurobiology, 2016, 25, 241-251.	0.7	224
22	70-kDa Heat Shock Protein Downregulates Dynamin in Experimental Stroke. Stroke, 2016, 47, 2103-2111.	1.0	32
23	NADPH oxidase in stroke and cerebrovascular disease. Neurological Research, 2012, 34, 338-345.	0.6	64
24	Adsorption of mesenchymal stem cells and cortical neural stem cells on carbon nanotube/polycarbonate urethane. Nanomedicine, 2010, 5, 409-417.	1.7	21
25	Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. Journal of Biomedical Materials Research - Part A, 2009, 88A, 419-426.	2.1	40
26	The role of nerve growth factor in hyperosmolar stress induced apoptosis. Journal of Cellular Physiology, 2008, 216, 69-77.	2.0	23
27	Anti-Inflammatory Effects of the 70 kDa Heat Shock Protein in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 53-63.	2.4	210
28	FasL shedding is reduced by hypothermia in experimental stroke. Journal of Neurochemistry, 2008, 106, 541-550.	2.1	55
29	Decreased Macrophage Density on Carbon Nanofiber Patterns. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	1
30	Mild hypothermia inhibits Fas expression and caspase-8 activation following experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S486-S486.	2.4	0