Junji Hui Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6386188/publications.pdf Version: 2024-02-01

Ιτινίι Ητι Υπλν

#	Article	IF	CITATIONS
1	Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biology and Biochemistry, 2017, 113, 89-98.	8.8	157
2	Exotic <i>Spartina alterniflora</i> invasion alters ecosystem–atmosphere exchange of <scp>CH</scp> ₄ and N ₂ O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 2015, 21, 1567-1580.	9.5	141
3	Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nature Climate Change, 2019, 9, 318-322.	18.8	141
4	Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biology and Biochemistry, 2018, 123, 218-228.	8.8	107
5	Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Science of the Total Environment, 2018, 628-629, 121-130.	8.0	72
6	A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture, Ecosystems and Environment, 2018, 264, 44-53.	5.3	65
7	Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season. Journal of Cleaner Production, 2015, 104, 52-58.	9.3	55
8	Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Applied Microbiology and Biotechnology, 2014, 98, 1817-1829.	3.6	49
9	Methane and nitrous oxide have separated production zones and distinct emission pathways in freshwater aquaculture ponds. Water Research, 2021, 190, 116739.	11.3	48
10	Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Science of the Total Environment, 2019, 669, 547-558.	8.0	43
11	Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh. Atmospheric Environment, 2015, 112, 72-80.	4.1	40
12	<i>Spartina alterniflora</i> invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. Journal of Ecology, 2019, 107, 2436-2450.	4.0	40
13	A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agriculture, Ecosystems and Environment, 2018, 267, 63-73.	5.3	38
14	Organic fertilizers have divergent effects on soil N2O emissions. Biology and Fertility of Soils, 2019, 55, 685-699.	4.3	36
15	Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Scientific Reports, 2016, 6, 18777.	3.3	28
16	Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: A three-year study. Science of the Total Environment, 2020, 743, 140500.	8.0	23
17	Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands. Applied Microbiology and Biotechnology, 2014, 98, 4711-4721.	3.6	22
18	Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Applied Microbiology and Biotechnology, 2015, 99, 10779-10791.	3.6	17

Junji Hui Yuan

#	Article	IF	CITATIONS
19	Microbial decomposition of soil organic matter determined by edaphic characteristics of mangrove forests in East Asia. Science of the Total Environment, 2021, 763, 142972.	8.0	14
20	Nonâ€native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Global Change Biology, 2022, 28, 5453-5468.	9.5	14
21	Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: A meta-analysis of contrasting mitigation scenarios. Pedosphere, 2021, 31, 231-242.	4.0	13
22	Large variations in indirect N2O emission factors (EF5) from coastal aquaculture systems in China from plot to regional scales. Water Research, 2021, 200, 117208.	11.3	13
23	Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields. Environmental Pollution, 2022, 292, 118344.	7.5	13
24	Mechanisms of enhanced methane emission due to introduction of Spartina anglica and Phragmites australis in a temperate tidal salt marsh. Ecological Engineering, 2020, 153, 105905.	3.6	11
25	N2O and NO Emissions as Affected by the Continuous Combined Application of Organic and Mineral N Fertilizer to a Soil on the North China Plain. Agronomy, 2020, 10, 1965.	3.0	11
26	Methanogenic Community Was Stable in Two Contrasting Freshwater Marshes Exposed to Elevated Atmospheric CO2. Frontiers in Microbiology, 2017, 8, 932.	3.5	10
27	Divergent responses of wetland methane emissions to elevated atmospheric CO2 dependent on water table. Water Research, 2021, 205, 117682.	11.3	8
28	Corn cobs efficiently reduced ammonia volatilization and improved nutrient value of stored dairy effluents. Science of the Total Environment, 2021, 769, 144712.	8.0	7
29	Optimizing the application of dairy farm effluent and manure to mitigate gas emission. Journal of Soils and Sediments, 2021, 21, 2381-2393.	3.0	2