
Evgeni H Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6385200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Simulation Studies of Temperature Effect on Thermophysical Properties of Graphene-Based Polylactic Acid. Materials, 2022, 15, 986.	1.3	11
2	Advanced Nanomechanical Characterization of Biopolymer Films Containing GNPs and MWCNTs in Hybrid Composite Structure. Nanomaterials, 2022, 12, 709.	1.9	4
3	Synergistic Effect of Graphene Nanoplatelets and Multiwall Carbon Nanotubes Incorporated in PLA Matrix: Nanoindentation of Composites with Improved Mechanical Properties. Journal of Materials Engineering and Performance, 2021, 30, 3822-3830.	1.2	10
4	Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Applied Composite Materials, 2021, 28, 1175-1192.	1.3	13
5	Study on the Adhesion Properties of Graphene and Hexagonal Boron Nitride Monolayers in Multilayered Micro-devices by Scratch Adhesion Test. Journal of Materials Engineering and Performance, 2021, 30, 5673-5681.	1.2	3
6	Experimental, Theoretical and Simulation Studies on the Thermal Behavior of PLA-Based Nanocomposites Reinforced with Different Carbonaceous Fillers. Nanomaterials, 2021, 11, 1511.	1.9	11
7	Enhancing the electromagnetic interference shielding of flexible films with reduced graphene oxide-based coatings. Progress in Organic Coatings, 2021, 158, 106341.	1.9	11
8	Preparation of Highly Efficient Electromagnetic Interference Shielding Polylactic Acid/Graphene Nanocomposites for Fused Deposition Modeling Three-Dimensional Printing. Industrial & Engineering Chemistry Research, 2020, 59, 15565-15575.	1.8	36
9	THz Spectroscopy as a Versatile Tool for Filler Distribution Diagnostics in Polymer Nanocomposites. Polymers, 2020, 12, 3037.	2.0	3
10	Dielectric Spectroscopy and Thermal Properties of Poly(lactic) Acid Reinforced with Carbon-Based Particles: Experimental Study and Design Theory. Polymers, 2020, 12, 2414.	2.0	13
11	Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application. Polymers, 2020, 12, 1208.	2.0	12
12	Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene. Nanomaterials, 2020, 10, 35.	1.9	46
13	Composition dependence in surface properties of poly(lactic acid)/graphene/carbon nanotube composites. Materials Chemistry and Physics, 2020, 249, 122702.	2.0	7
14	Nanocarbon/Poly(Lactic) Acid for 3D Printing: Effect of Fillers Content on Electromagnetic and Thermal Properties. Materials, 2019, 12, 2369.	1.3	42
15	Stretching and Tunability of Grapheneâ€Based Passive Terahertz Components. Physica Status Solidi (B): Basic Research, 2019, 256, 1800683.	0.7	4
16	Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly(lactic) acid-based filament for 3D printing. Composites Science and Technology, 2019, 181, 107712.	3.8	63
17	Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3D printing applications. Composites Part B: Engineering, 2019, 167, 467-476.	5.9	58
18	PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications. Applied Sciences (Switzerland), 2019, 9, 1209.	1.3	129

Ενσενί Η Ινάνον

#	Article	IF	CITATIONS
19	Effects of Graphene Nanoplatelets and Multiwall Carbon Nanotubes on the Structure and Mechanical Properties of Poly(lactic acid) Composites: A Comparative Study. Applied Sciences (Switzerland), 2019, 9, 469.	1.3	90
20	Nanoindentation analysis of 3D printed poly(lactic acid)â€based composites reinforced with graphene and multiwall carbon nanotubes. Journal of Applied Polymer Science, 2019, 136, 47260.	1.3	27
21	Terahertz absorption in graphite nanoplatelets/polylactic acid composites. Journal Physics D: Applied Physics, 2018, 51, 145307.	1.3	36
22	Influence of carbon nanotube surface treatment on resistivity and lowâ€frequency noise characteristics of epoxyâ€based composites. Polymer Composites, 2018, 39, E1224.	2.3	4
23	Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 2018, 11, 2256.	1.3	37
24	Release of Graphene and Carbon Nanotubes from Biodegradable Poly(Lactic Acid) Films during Degradation and Combustion: Risk Associated with the End-of-Life of Nanocomposite Food Packaging Materials. Materials, 2018, 11, 2346.	1.3	19
25	Self-Assembly of a Thermally Responsive Double-Hydrophilic Copolymer in Ethanol–Water Mixtures: The Effect of Preferential Adsorption and Co-Nonsolvency. Journal of Physical Chemistry B, 2018, 122, 6072-6078.	1.2	11
26	Morphological, rheological and electrical study of PLA reinforced with carbon-based fillers for 3D printing applications. AIP Conference Proceedings, 2018, , .	0.3	5
27	Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes. Journal of Theoretical and Applied Mechanics (Bulgaria), 2018, 48, 85-99.	0.6	31
28	Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films. Journal of Applied Physics, 2017, 121, .	1.1	20
29	Release of carbon nanoparticles of different size and shape from nanocomposite poly(lactic) acid film into food simulants. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1072-1085.	1.1	8
30	Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films. Journal of Applied Polymer Science, 2017, 134, 45469.	1.3	12
31	Low frequency noise spectroscopy of multi-walled carbon nanotubes composites. , 2017, , .		0
32	THz and microwave properties of 3D-printed nanocarbon based multilayers. , 2017, , .		0
33	Nanoscale reinforcement of polypropylene composites with carbon nanotubes and clay: Dispersion state, electromagnetic and nanomechanical properties. Polymer Engineering and Science, 2016, 56, 269-277.	1.5	17
34	Rheology, crystallization behavior, and dielectric study on molecular dynamics of polypropylene composites with multiwalled carbon nanotubes and clay. Polymer Composites, 2016, 37, 2756-2769.	2.3	7
35	Mechanical properties investigation of bilayer graphene/poly(methyl methacrylate) thin films at macro, micro and nanoscale. Carbon, 2016, 100, 355-366.	5.4	23
36	Mechanical behavior at nanoscale of chitosan oated PE surface. Journal of Applied Polymer Science, 2015, 132, .	1.3	3

Ενσενί Η Ινάνον

#	Article	IF	CITATIONS
37	Reinforcement Effects of Carbon Nanotubes in Polypropylene. , 2015, , 357-388.		5
38	Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites. Composites Science and Technology, 2015, 106, 85-92.	3.8	65
39	Thermal and rheological characterization of antibacterial nanocomposites. Journal of Thermoplastic Composite Materials, 2014, 27, 268-284.	2.6	12
40	Strain Localisation in iPP/MWCNT Nanocomposites Using Digital Image Correlation. Strain, 2014, 50, 37-47.	1.4	5
41	EPR and Rheological Study of Hybrid Interfaces in Gold–Clay–Epoxy Nanocomposites. Langmuir, 2014, 30, 13411-13421.	1.6	16
42	Effect of Matrix Viscosity on Rheological and Microwave Properties of Polymer Nanocomposites with Multiwall Carbon Nanotubes. Journal of Theoretical and Applied Mechanics (Bulgaria), 2014, 44, 83-96.	0.6	6
43	Epoxy/Multi-Walled Carbon Nanotube Composites–Structure, Viscoelastic and Nanomechanical Properties. Nanoscience and Nanotechnology Letters, 2014, 6, 624-629.	0.4	2
44	Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. Journal of Applied Physics, 2013, 114, 164304.	1.1	71
45	Applied Study on Mechanics of Nanocomposites with Carbon Nanofillers. Journal of Theoretical and Applied Mechanics (Bulgaria), 2013, 43, 67-76.	0.6	8
46	Evolution of Rheology, Structure, andÂProperties around the Rheological Flocculation and Percolation Thresholds in Polymer Nanocomposites. , 2013, , 55-86.		3
47	Role of Surface Functionalisation of Multiwall Carbon Nanotubes on Nanomechanical and Electrical Properties of Epoxy Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 1056-1063.	0.4	2
48	Effect of processing on rheological properties and structure development of EPOXY/MWCNT nanocomposites. Journal of Nanoparticle Research, 2011, 13, 3393-3403.	0.8	14
49	Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 431-442.	2.4	41
50	lsotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structure. Journal of Applied Polymer Science, 2010, 115, 3576-3585.	1.3	34
51	Carbon nanotubes vs graphene nanoplatelets for 3D-printable composites. IOP Conference Series: Materials Science and Engineering, 0, 503, 012010.	0.3	3
52	Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performance. Polymer Composites, 0, , .	2.3	6