Sebastian Molin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6384298/publications.pdf

Version: 2024-02-01

279798 330143 1,870 91 23 37 citations h-index g-index papers 92 92 92 1298 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physicochemical properties of Mn1.45Co1.45Cu0.1O4 spinel coating deposited on the Crofer 22 H ferritic steel and exposed to high-temperature oxidation under thermal cycling conditions. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5649-5666.	3.6	9
2	Effectiveness of a dual surface modification of metallic interconnects for application in energy conversion devices. International Journal of Hydrogen Energy, 2022, 47, 6295-6311.	7.1	13
3	Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects. Journal of the European Ceramic Society. 2022. 42. 3271-3281.	5.7	14
4	Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts. Nanomaterials, 2022, 12, 1162.	4.1	4
5	Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy. Materials and Design, 2022, 215, 110492.	7.0	7
6	Glass-ceramic joining of Fe22Cr porous alloy to Crofer22APU: interfacial issues and mechanical properties. Ceramics International, 2022, 48, 28519-28527.	4.8	2
7	Influence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinel. International Journal of Hydrogen Energy, 2021, 46, 6775-6791.	7.1	21
8	Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition. Materials Letters, 2021, 286, 129229.	2.6	17
9	Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers. Advanced Materials Interfaces, 2021, 8, 2002227.	3.7	10
10	Mn-Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 A°C and compositional modifications. Journal of the European Ceramic Society, 2021, 41, 4496-4504.	5.7	31
11	Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C. Materials, 2021, 14, 3836.	2.9	12
12	The effect of Fe on chemical stability and oxygen evolution performance of high surface area SrTix-1FexO3-δ mixed ionic-electronic conductors in alkaline media. International Journal of Hydrogen Energy, 2021, 46, 28575-28590.	7.1	14
13	High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C. Corrosion Science, 2021, 189, 109589.	6.6	24
14	Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceria. Nanoscale, 2021, 13, 7583-7589.	5.6	5
15	The Effect of Cobalt Incorporation into Nickel–Iron Oxide/(oxy)hydroxide Catalyst on Electrocatalytic Performance Toward Oxygen Evolution Reaction. Energy Technology, 2021, 9, 2100688.	3.8	10
16	Glass-ceramic sealants and steel interconnects: Accelerated interfacial stability and reactivity tests at high temperature. Materials and Design, 2021, 212, 110259.	7.0	3
17	The influence of thermal treatment on electrocatalytic properties of Mn-Co nanofilms on nickel foam toward oxygen evolution reaction activity. Materials Letters, 2020, 258, 126759.	2.6	2
18	Effect of interconnect coating procedure on solid oxide fuel cell performance. Materials Letters, 2020, 259, 126898.	2.6	24

#	Article	IF	CITATIONS
19	Preparation of Hydrogen Electrodes of Solid Oxide Cells by Infiltration: Effects of the Preparation Procedure on the Resulting Microstructure. Materials, 2020, 13, 131.	2.9	4
20	Solid oxide fuel and electrolysis cells. , 2020, , 387-547.		7
21	Electro-chemo-mechanical properties in nanostructured Ca-doped ceria (CDC) by field assisted sintering. Scripta Materialia, 2020, 187, 183-187.	5.2	11
22	Processing of Ce0.8Gd0.2O2-δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance. Journal of the European Ceramic Society, 2020, 40, 5626-5633.	5.7	13
23	Electrical conductivity of nanostructured acceptor-doped ceria fabricated by spark plasma sintering (SPS). Materials Letters, 2020, 279, 128513.	2.6	7
24	The Influence of the Electrodeposition Parameters on the Properties of Mn-Co-Based Nanofilms as Anode Materials for Alkaline Electrolysers. Materials, 2020, 13, 2662.	2.9	6
25	Effect of sintering temperature on electrochemical performance of porous SrTi1-xFexO3-l̂′ (x = 0.35, 0.5,)	Ţj ETQq1	1 0.78431
26	Study of oxygen electrode reactions on symmetrical porous SrTi0.30Fe0.70O3-δ electrodes on Ce0.8Gd0.2O1.9 electrolyte at 800°C–500°C. Electrochimica Acta, 2020, 346, 136285.	5.2	8
27	Preparation and characterisation of iron substituted Mn1.7Cu1.3-xFexO4 spinel oxides (x = 0, 0.1, 0.3,) Tj ETQq1 $\stackrel{?}{}$	1	4.rgBT /Ove
28	Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterization. Journal of Power Sources, 2020, 455, 227910.	7.8	21
29	MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 14867-14879.	7.1	35
30	Deposition and Electrical and Structural Properties of La0.6Sr0.4CoO3 Thin Films for Application in High-Temperature Electrochemical Cells. Journal of Electronic Materials, 2019, 48, 5428-5441.	2.2	8
31	Effective yttrium based coating for steel interconnects of solid oxide cells: Corrosion evaluation in steam-hydrogen atmosphere. Journal of Power Sources, 2019, 440, 226814.	7.8	11
32	Investigation of electrophoretic deposition as a method for coating complex shaped steel parts in solid oxide cell stacks. Surface and Coatings Technology, 2019, 380, 125093.	4.8	13
33	The Influence of Iron Doping on Performance of SrTi _{1-X} Fe _x O _{3-Î} Perovskite Oxygen Electrode for SOFC. ECS Transactions, 2019, 91, 1299-1307.	0.5	7
34	Evaluation of Praseodymium and Gadolinium Doped Ceria as a Possible Barrier Layer Material for Solid Oxide Cells. ECS Transactions, 2019, 91, 1165-1172.	0.5	4
35	In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition. Ceramics International, 2019, 45, 19148-19157.	4.8	41
36	Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn-Co coatings for solid oxide cell interconnects. Journal of the European Ceramic Society, 2019, 39, 3768-3777.	5.7	42

#	Article	IF	Citations
37	High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air. Journal of Alloys and Compounds, 2019, 787, 1327-1335.	5.5	49
38	Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes. International Journal of Hydrogen Energy, 2019, 44, 1827-1838.	7.1	21
39	High-temperature oxidation of the Crofer 22â€ ⁻ H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties. Materials Chemistry and Physics, 2019, 225, 227-238.	4.0	39
40	High-temperature kinetics study of 430L steel powder oxidized in air at 600–850 °C. Corrosion Science, 2019, 149, 100-107.	6.6	16
41	Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy. International Journal of Applied Ceramic Technology, 2018, 15, 361-369.	2.1	3
42	Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corrosion Science, 2018, 138, 189-199.	6.6	40
43	Co-deposition of CuO and Mn1.5Co1.5O4 powders on Crofer22APU by electrophoretic method: Structural, compositional modifications and corrosion properties. Materials Letters, 2018, 218, 329-333.	2.6	21
44	Evaluation of electrodeposited Mnâ€Co protective coatings on Crofer 22 <scp>APU</scp> steel. International Journal of Applied Ceramic Technology, 2018, 15, 349-360.	2.1	19
45	Sintering of MnCo2O4 coatings prepared by electrophoretic deposition. Materials Letters, 2018, 213, 394-398.	2.6	43
46	Low temperature deposition of dense MnCo2O4 protective coatings for steel interconnects of solid oxide cells. Journal of the European Ceramic Society, 2018, 38, 4576-4579.	5.7	10
47	Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells. Surface and Coatings Technology, 2017, 313, 168-176.	4.8	13
48	Status report on high temperature fuel cells in Poland – Recent advances and achievements. International Journal of Hydrogen Energy, 2017, 42, 4366-4403.	7.1	55
49	Determination of the bonding strength in solid oxide fuel cells' interfaces by Schwickerath crack initiation test. Journal of the European Ceramic Society, 2017, 37, 3565-3578.	5.7	18
50	Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer. Materials Letters, 2017, 189, 252-255.	2.6	14
51	Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects. Journal of the European Ceramic Society, 2017, 37, 4781-4791.	5.7	66
52	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. Journal of the Electrochemical Society, 2017, 164, F1005-F1010.	2.9	15
53	Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. Journal of Power Sources, 2017, 372, 145-156.	7.8	85
54	Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films. Crystals, 2017, 7, 185.	2.2	21

#	Article	IF	Citations
55	High Temperature Corrosion Evaluation of Porous Hastelloy X Alloy in Air and Humidified Hydrogen Atmospheres. Journal of the Electrochemical Society, 2016, 163, C296-C302.	2.9	4
56	Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750°C. Journal of Power Sources, 2016, 336, 408-418.	7.8	68
57	Assesment of (Mn,Co) ₃ 30 ₄ powders for possible coating material for SOFC/SOEC interconnects. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012017.	0.6	11
58	THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS. Electrochimica Acta, 2016, 204, 136-145.	5.2	25
59	Electrochemical synthesis of 3D nano-/micro-structured porous polypyrrole. Materials Letters, 2016, 183, 397-400.	2.6	15
60	Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys. Journal of Membrane Science, 2016, 506, 11-21.	8.2	23
61	Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces. Materials Letters, 2016, 162, 250-253.	2.6	16
62	Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. Journal of Power Sources, 2015, 280, 379-386.	7.8	78
63	Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film. Electrochimica Acta, 2015, 176, 156-161.	5.2	46
64	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. ECS Transactions, 2015, 68, 1691-1700.	0.5	5
65	High temperature corrosion and corrosion protection of porous Ni22Cr alloys. Surface and Coatings Technology, 2015, 261, 385-390.	4.8	15
66	Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis. Procedia Engineering, 2014, 98, 93-100.	1.2	18
67	Oxidation study of coated Crofer 22 APU steel in dry oxygen. Journal of Power Sources, 2014, 251, 488-495.	7.8	37
68	Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks. ECS Transactions, 2013, 57, 2245-2252.	0.5	13
69	Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming. Solid State Ionics, 2013, 251, 70-77.	2.7	15
70	High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks. ECS Transactions, 2013, 50, 11-20.	0.5	15
71	Application of wet powder spraying for anode supported solid oxide fuel cell with a perovskite SrTi _{0.98} Nb _{0.02} O _{3-<i>Î</i>} anode. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2736-2741.	1.8	3
72	Solid oxide fuel cells with Ni-infiltrated perovskite anode. Solid State Ionics, 2012, 221, 11-14.	2.7	27

#	Article	IF	Citations
73	Optimization of microstructure and properties of acceptor-doped barium cerate. Solid State Ionics, 2012, 225, 245-249.	2.7	16
74	The comparison of SrTi0.98Nb0.02O3â€"δ-CeO2 and SrTi0.98Nb0.02O3â€"δ-YSZ composites for use in SOFC anodes. Journal of Electroceramics, 2012, 28, 132-138.	2.0	15
75	Structural and electrical properties of Sr(Ti, Fe)O3-δ materials for SOFC cathodes. Journal of Electroceramics, 2012, 28, 80-87.	2.0	56
76	Stainless Steel/Yttria Stabilized Zirconia Composite Supported Solid Oxide Fuel Cell. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	10
77	Coatings for improvement of high temperature corrosion resistance of porous alloys. Journal of the European Ceramic Society, 2011, 31, 2707-2710.	5.7	13
78	Metal Supported Solid Oxide Fuel Cells - Selected Aspects. IOP Conference Series: Materials Science and Engineering, 2011, 18, 132004.	0.6	1
79	FABRICATION AND CHARACTERIZATION OF ANODE SUPPORTED SOLID OXIDE FUEL CELLS. Functional Materials Letters, 2011, 04, 161-164.	1.2	1
80	Synthesis of acceptorâ€doped Baâ€Ceâ€Zrâ€O perovskites. Crystal Research and Technology, 2010, 45, 1251-1	2517.3	9
81	High temperature oxidation of porous alloys for solid oxide fuel cell applications. Solid State Ionics, 2010, 181, 1214-1220.	2.7	40
82	Structure and electrical properties of ceramic proton conductors obtained with molten-salt and solid-state synthesis methods. Journal of Non-Crystalline Solids, 2010, 356, 1976-1979.	3.1	11
83	Protective coatings for stainless steel for SOFC applications. Journal of Solid State Electrochemistry, 2009, 13, 1695-1700.	2.5	25
84	Interaction of yttria stabilized zirconia electrolyte with Fe2O3 and Cr2O3. Journal of Power Sources, 2009, 194, 20-24.	7.8	16
85	Conductivity improvement of Ce0.8Gd0.2O1.9 solid electrolyte. Journal of Rare Earths, 2009, 27, 655-660.	4.8	11
86	Evaluation of 316L porous stainless steel for SOFC support. Journal of the European Ceramic Society, 2009, 29, 757-762.	5.7	33
87	Applications of spin coating of polymer precursor and slurry suspensions for Solid Oxide Fuel Cell fabrication. Journal of Power Sources, 2009, 194, 10-15.	7.8	28
88	Electrical properties of Y0.08Sr0.92Ti0.92Nb0.08 O3â^î after reduction in different reducing conditions. Journal of Alloys and Compounds, 2009, 473, 496-499.	5.5	15
89	Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures. Journal of Power Sources, 2008, 181, 31-37.	7.8	94
90	Chemical Interaction between Perovskite La0.6Sr0.4FeO3and Super-Ionic Zr0.84Y0.16Ox. Acta Physica Polonica A, 2008, 114, 135-141.	0.5	2

SEBASTIAN MOLIN

#	Article	IF	CITATIONS
91	Perovskites in Solid Oxide Fuel Cells. Solid State Phenomena, 0, 183, 65-70.	0.3	12