
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6384210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 2009, 324, 522-528.	6.0	1,038
2	Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 2000, 8, 87-96.	0.5	271
3	Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Systems Biology, 2008, 2, 19.	3.0	221
4	Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18905-18910.	3.3	157
5	Onset of transcription in bovine oocytes and preimplantation embryos. Molecular Reproduction and Development, 1998, 51, 36-41.	1.0	153
6	Control of Gene Expression at the Onset of Bovine Embryonic Development1. Biology of Reproduction, 1999, 61, 1198-1207.	1.2	135
7	Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Science, 2019, 6, 268.	0.9	124
8	Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. Journal of Pineal Research, 2007, 43, 283-288.	3.4	111
9	Transcriptome analysis of bull spermatozoa: implications for male fertility. Reproductive BioMedicine Online, 2010, 21, 312-324.	1.1	99
10	Reprogramming mammalian somatic cells. Theriogenology, 2012, 78, 1869-1886.	0.9	92
11	Developmental changes in RNA polymerase II in bovine oocytes, early embryos, and effect of α-amanitin on embryo development. Molecular Reproduction and Development, 1998, 51, 381-389.	1.0	82
12	Developmental and molecular correlates of bovine preimplantation embryos. Reproduction, 2006, 131, 895-904.	1.1	79
13	Sperm Protamine-Status Correlates to the Fertility of Breeding Bulls1. Biology of Reproduction, 2015, 92, 92.	1.2	77
14	Proteomic landscape of seminal plasma associated with dairy bull fertility. Scientific Reports, 2018, 8, 16323.	1.6	77
15	Dynamics of microRNAs in bull spermatozoa. Reproductive Biology and Endocrinology, 2012, 10, 82.	1.4	73
16	Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics, 2009, 10, 176.	1.2	70
17	Metabolomic markers of fertility in bull seminal plasma. PLoS ONE, 2018, 13, e0195279.	1.1	70
18	Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Animal Reproduction Science, 2007, 101, 225-240.	0.5	68

#	Article	IF	CITATIONS
19	Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics, 2019, 20, 714.	1.2	59
20	Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction, 2007, 133, 1107-1120.	1.1	56
21	Proteomics-Based Systems Biology Modeling of Bovine Germinal Vesicle Stage Oocyte and Cumulus Cell Interaction. PLoS ONE, 2010, 5, e11240.	1.1	42
22	Health and Reproductive Profiles of Malaria Antigen-Producing Transgenic Goats Derived by Somatic Cell Nuclear Transfer. Cloning and Stem Cells, 2005, 7, 107-118.	2.6	41
23	A whole-genome association analysis of noncompensatory fertility in Holstein bulls. Journal of Dairy Science, 2011, 94, 4695-4699.	1.4	40
24	Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility. Reproduction, 2013, 146, 263-272.	1.1	39
25	Amino Acids of Seminal Plasma Associated With Freezability of Bull Sperm. Frontiers in Cell and Developmental Biology, 2019, 7, 347.	1.8	38
26	Molecular Physiognomies and Applications of Adipose-Derived Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 298-308.	5.6	35
27	Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Scientific Reports, 2020, 10, 14661.	1.6	35
28	Interrelationships Between Apoptosis and Fertility in Bull Sperm. Journal of Reproduction and Development, 2013, 59, 18-26.	0.5	34
29	Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia, 2018, 50, e12915.	1.0	34
30	Environmental stressors influencing hormones and systems physiology in cattle. Reproductive Biology and Endocrinology, 2014, 12, 58.	1.4	31
31	Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos. BMC Genomics, 2009, 10, 190.	1.2	30
32	Delivering value from sperm proteomics for fertility. Cell and Tissue Research, 2012, 349, 783-793.	1.5	30
33	Functional aspects of seminal plasma and sperm proteins and their potential as molecularmarkers of fertility. Animal Reproduction, 2016, 13, 191-199.	0.4	30
34	Viable Transgenic Goats Derived from Skin Cells. Transgenic Research, 2004, 13, 215-224.	1.3	29
35	Metabolism, protein content, and in vitro embryonic development of goat cumulus-oocyte complexes matured with physiological concentrations of glucose andL-lactate. Molecular Reproduction and Development, 2006, 73, 256-266.	1.0	27
36	Review: Potential of water buffalo in world agriculture: Challenges and opportunities. Applied Animal Science, 2019, 35, 255-268.	0.4	27

#	Article	IF	CITATIONS
37	EThcD and 213 nm UVPD for Top-Down Analysis of Bovine Seminal Plasma Proteoforms on Electrophoretic and Chromatographic Time Frames. Analytical Chemistry, 2020, 92, 2979-2987.	3.2	26
38	Expression patterns of histone deacetylases in bovine oocytes and early embryos, and the effect of their inhibition on embryo development. Zygote, 2001, 9, 123-133.	0.5	25
39	Comparative functional genomics of mammalian DNA methyltransferases. Reproductive BioMedicine Online, 2010, 20, 243-255.	1.1	25
40	Culture systems for bovine embryos. Livestock Science, 2009, 121, 141-149.	0.6	22
41	Sperm macromolecules associated with bull fertility. Animal Reproduction Science, 2016, 169, 88-94.	0.5	21
42	Sperm miRâ€15a and miRâ€29b are associated with bull fertility. Andrologia, 2020, 52, e13412.	1.0	20
43	Metabolomes of sperm and seminal plasma associated with bull fertility. Animal Reproduction Science, 2020, 220, 106355.	0.5	19
44	Sperm Functional Genome Associated With Bull Fertility. Frontiers in Veterinary Science, 2021, 8, 610888.	0.9	19
45	Lipidomic markers of sperm cryotolerance in cattle. Scientific Reports, 2020, 10, 20192.	1.6	17
46	Advancing Semen Evaluation Using Lipidomics. Frontiers in Veterinary Science, 2021, 8, 601794.	0.9	17
47	Regulatory network of miRNA, IncRNA, transcription factor and target immune response genes in bovine mastitis. Scientific Reports, 2021, 11, 21899.	1.6	16
48	Synchronization of Goat Fibroblast Cells at Quiescent Stage and Determination of Their Transition from G0 to G1 by Detection of Cyclin D1 mRNA. Cloning and Stem Cells, 2004, 6, 58-66.	2.6	15
49	Cellular and Functional Physiopathology of Bull Sperm With Altered Sperm Freezability. Frontiers in Veterinary Science, 2020, 7, 581137.	0.9	15
50	Sperm cellular and nuclear dynamics associated with bull fertility. Animal Reproduction Science, 2019, 211, 106203.	0.5	14
51	Molecular, cellular, and physiological determinants of bull fertility. Turkish Journal of Veterinary and Animal Sciences, 2014, 38, 637-642.	0.2	13
52	Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study. Reproductive Biology and Endocrinology, 2017, 15, 59.	1.4	13
53	Mycotoxin Alpha-Zearalenol Impairs the Quality of Preimplantation Porcine Embryos. Journal of Reproduction and Development, 2012, 58, 338-343.	0.5	13
54	Functional genomics of HMGN3a and SMARCAL1 in early mammalian embryogenesis. BMC Genomics, 2009, 10, 183.	1.2	12

#	Article	IF	CITATIONS
55	Sperm superoxide dismutase is associated with bull fertility. Reproduction, Fertility and Development, 2016, 28, 1405.	0.1	12
56	Seminal plasma proteins and metabolites: effects on sperm function and potential as fertility markers. Animal Reproduction, 2018, 15, 691-702.	0.4	12
57	Proteomic fertility markers in ram sperm. Animal Reproduction Science, 2021, 235, 106882.	0.5	12
58	Sperm proteins ODF2 and PAWP as markers of fertility in breeding bulls. Cell and Tissue Research, 2022, 387, 159-171.	1.5	12
59	Proteomic analysis of seminal plasma from locally-adapted "Curraleiro Pé-Duro bulls―(Bos taurus): identifying biomarkers involved in sperm physiology in endangered animals for conservation of biodiversity. Animal Reproduction Science, 2017, 183, 86-101.	0.5	11
60	Retained Acetylated Histone Four in Bull Sperm Associated With Fertility. Frontiers in Veterinary Science, 2019, 6, 223.	0.9	11
61	Effects of culture media and inhibitors on biology of porcine early embryonic development in vitro. Livestock Science, 2009, 121, 102-107.	0.6	9
62	Expression profile of Tollâ€like receptor 4 in rat testis and epididymis throughout postnatal development. Andrologia, 2020, 52, e13518.	1.0	7
63	Functional attributes of seminal proteins in bull fertility: a systematic review. Reproduction, 2021, 161, 459-475.	1.1	7
64	Leptin and IGF-I improve bovine embryo quality in vitro. Animal Reproduction, 2017, 14, 1151-1160.	0.4	7
65	Review: Sperm: Comparative morphology and function related to altered reproductive strategies and fertility in mammals. The Professional Animal Scientist, 2018, 34, 558-565.	0.7	6
66	Expression dynamics of Integrin Subunit Beta 5 in bovine gametes and embryos imply functions in male fertility and early embryonic development. Andrologia, 2019, 51, e13305.	1.0	6
67	Relationship Between Gait Mechanics and the Speed of the Trot in the Weimaraner Dog Breed. Topics in Companion Animal Medicine, 2019, 35, 26-30.	0.4	5
68	Dynamics of Sperm Chromatin Associated with Bull Fertility Biology of Reproduction, 2012, 87, 8-8.	1.2	5
69	Superovulation in goats during the second follicular wave, with or without exogenous progesterone. Small Ruminant Research, 2012, 104, 146-150.	0.6	4
70	R eview : Challenges and opportunities in rising feral horse populations. The Professional Animal Scientist, 2016, 32, 717-724.	0.7	4
71	Harnessing the Value of Rumen Protected Amino Acids to Enhance Animal Performance – A Review. Annals of Animal Science, 2022, 22, 43-62.	0.6	3
72	93 MICRORNA SEQUENCES OF BULL SPERMATOZOA. Reproduction, Fertility and Development, 2009, 21, 147.	0.1	3

#	Article	IF	CITATIONS
73	Determinants of sperm morphology , 2014, , 34-56.		3
74	Comparative analysis of various step-dilution techniques on the quality of frozen Limousin bull semen. Veterinary World, 2020, 13, 2422-2428.	0.7	3
75	Application of Proteomics to Identify Fertility Markers in Angus Bull Sperm. HAYATI Journal of Biosciences, 2020, 27, 116.	0.1	3
76	Implications of sperm heat shock protein 70-2 in bull fertility. Veterinary World, 0, , 1456-1466.	0.7	3
77	Makings of the Best Spermatozoa: Molecular Determinants of High Fertility. , 2012, , .		2
78	Identification of biomarkers for bull fertility using functional genomics. Animal Reproduction, 2022, 19, e20220004.	0.4	2
79	140 Effects of resveratrol on post-thaw quality of stallion sperm. Journal of Equine Veterinary Science, 2015, 35, 443.	0.4	1
80	54 Effect of Direct Fed Microbials on Apparent Nutrient Digestibility and the Fecal Microbial Population in the Sedentary Horse Journal of Animal Science, 2018, 96, 29-29.	0.2	1
81	161 Effect of Direct Fed Microbials on Apparent Nutrient Digestibility, Fecal Microbial Population, and Blood Metabolites in the Moderately Exercised Horse Journal of Animal Science, 2018, 96, 85-85.	0.2	1
82	Effect of Sericin Supplementation in Collection Medium on Bovine Oocyte Nuclear Maturation. IOP Conference Series: Earth and Environmental Science, 2020, 478, 012006.	0.2	1
83	Onset of transcription in bovine oocytes and preimplantation embryos. , 1998, 51, 36.		1
84	100 PROTEOME OF BULL SPERMATOZOA. Reproduction, Fertility and Development, 2008, 20, 130.	0.1	1
85	195 SPERMATOZOAL PROTEIN MARKERS FOR ANGUS BULL FERTILITY. Reproduction, Fertility and Development, 2011, 23, 198.	0.1	1
86	Life Skill Development and Financial Impact Associated With a Youth Livestock Sales Program. Journal of Youth Development, 2019, 14, 70-87.	0.1	1
87	PSXVII-10 Application of a survey instrument for determining psychographic profiles of participants of the Dixie Nationals Sale of Junior Champions Journal of Animal Science, 2018, 96, 198-198.	0.2	0
88	Evaluation of Friesian Holstein Bulls Fertility in Lembang and Singosari Artificial Insemination Center using West Java ISIKHNAS Data. IOP Conference Series: Earth and Environmental Science, 2020, 478, 012005.	0.2	0
89	Relationship among Body Weight, Scrotal Circumference and Sperm Quantity of Bali Bulls in Baturiti Artificial Insemination Center. IOP Conference Series: Earth and Environmental Science, 2020, 478, 012004.	0.2	0
90	Boğa Sperminin Kriyotolerans İle İlişkili Fonksiyonel Değişkenleri. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2021, , .	0.0	0

#	Article	IF	CITATIONS
91	PSXV-15 Application of a survey instrument for understanding pain management practices associated with equine assisted activities and therapy horses. Journal of Animal Science, 2021, 99, 358-358.	0.2	0
92	265 DEVELOPMENT AND DYNAMICS OF GENE EXPRESSION OF BOVINE EMBRYOS CULTURED IN VITRO IN THREE DIFFERENT MEDIA. Reproduction, Fertility and Development, 2006, 18, 240.	0.1	0
93	166 EFFECTS OF LEPTIN AND IGF-1 ON PRE-IMPLANTATION DEVELOPMENT, DNA FRAGMENTATION, AND GENE EXPRESSION OF BOVINE EMBRYOS CULTURED IN VITRO. Reproduction, Fertility and Development, 2006, 18, 191.	0.1	0
94	DEVELOPMENTAL BIOLOGY OF PORCINE PREIMPLANTATION EMBRYOS IN VITRO. Biology of Reproduction, 2007, 77, 219-219.	1.2	0
95	TRANSCRIPTS OF BULL SPERMATOZOA. Biology of Reproduction, 2007, 77, 100-100.	1.2	0
96	Regulation of NOS enzymes by splice variants. FASEB Journal, 2011, 25, 1029.9.	0.2	0
97	Computational Analysis and Assesment of Potential Reproductive Fertiltiy Markers Beta-Tubulin 2C and Heat Shock Protein 10 Biology of Reproduction, 2011, 85, 533-533.	1.2	0
98	254 SYSTEMS BIOLOGY OF SPERM AND BULL FERTILITY. Reproduction, Fertility and Development, 2016, 28, 259.	0.1	0
99	153 Sperm metabolomic landscape associated with bull fertility. Reproduction, Fertility and Development, 2019, 31, 201.	0.1	0