
Changdeuck Bae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Hydrogen on Hafnium Zirconium Oxide Fabricated by Atomic Layer Deposition Using H ₂ O ₂ Oxidant. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100020.	2.4	2
2	Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter. Nanomaterials, 2020, 10, 409.	4.1	3
3	Role of Sulfur Incorporation in p-Type Nickel Oxide (p-NiO) on n-Type Silicon (n-Si) Photoelectrodes for Water Oxidation Reactions. ACS Applied Energy Materials, 2020, 3, 4255-4264.	5.1	9
4	Enhanced stability of guanidinium-based organic-inorganic hybrid lead triiodides in resistance switching. APL Materials, 2019, 7, .	5.1	12
5	Heterojunction Photoanode of Atomic-Layer-Deposited MoS ₂ on Single-Crystalline CdS Nanorod Arrays. ACS Applied Materials & Interfaces, 2019, 11, 37586-37594.	8.0	47
6	Non-equilibrium fractal growth of MoS ₂ for electrocatalytic hydrogen evolution. CrystEngComm, 2019, 21, 478-486.	2.6	10
7	Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts, 2019, 9, 149.	3.5	56
8	Fabrication of a Stable New Polymorph Gold Nanowire with Sixfold Rotational Symmetry. Advanced Materials, 2018, 30, e1706261.	21.0	16
9	Metallic Ni ₃ S ₂ Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 12807-12815.	8.0	78
10	Mixed-Phase (2H and 1T) MoS2 Catalyst for a Highly Efficient and Stable Si Photocathode. Catalysts, 2018, 8, 580.	3.5	20
11	Binder–Free Nanotubular Heteroâ€Structured Anodes of α–Fe ₂ O ₃ (Hematite) and TiN for Li–Ion Battery. ChemistrySelect, 2018, 3, 11027-11034.	1.5	3
12	Perovskite Solar Cells with Inorganic Electron―and Holeâ€Transport Layers Exhibiting Longâ€Term (â‰^500) Tj e1801010.	ETQq0 0 0 21.0) rgBT /Ovei 174
13	Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity?. Chemistry of Materials, 2018, 30, 4748-4754.	6.7	14
14	Perovskite Solar Cells: Perovskite Solar Cells with Inorganic Electron―and Holeâ€Transport Layers Exhibiting Longâ€Term (â‰^500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870210.	21.0	5
15	Nanometer Scale Confined Growth of Single-Crystalline Gold Nanowires via Photocatalytic Reduction. ACS Applied Materials & Interfaces, 2018, 10, 20929-20937.	8.0	3
16	Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Science Advances, 2017, 3, e1602215.	10.3	85
17	Edge-On MoS ₂ Thin Films by Atomic Layer Deposition for Understanding the Interplay between the Active Area and Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 7604-7614.	6.7	82
18	Formation of yttria-stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes. Nano Convergence, 2017, 4, 31.	12.1	4

CHANGDEUCK BAE

#	Article	IF	CITATIONS
19	An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale, 2016, 8, 11403-11412.	5.6	307
20	Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binderâ€Free Anode in Lithiumâ€lon Batteries. ChemSusChem, 2015, 8, 2363-2371.	6.8	25
21	Toward Coordinated Colloids: Site-Selective Growth of Titania on Patchy Silica Particles. Scientific Reports, 2015, 5, 9339.	3.3	9
22	Enhanced stabilisation of tetragonal (t)-ZrO ₂ in the controlled nanotubular geometry. RSC Advances, 2015, 5, 80472-80479.	3.6	6
23	Screening effect on photovoltaic performance in ferroelectric CH ₃ NH ₃ PbI ₃ perovskite thin films. Journal of Materials Chemistry A, 2015, 3, 20352-20358.	10.3	22
24	Thermopower engineering of Bi ₂ Te ₃ without alloying: the interplay between nanostructuring and defect activation. Semiconductor Science and Technology, 2014, 29, 064003.	2.0	26
25	Initial Self-Ordering of Porous Anodic Alumina: Transition from Polydispersity to Monodispersity. Journal of Physical Chemistry C, 2014, 118, 26789-26795.	3.1	12
26	Spatial Charge Separation in Asymmetric Structure of Au Nanoparticle on TiO ₂ Nanotube by Light-Induced Surface Potential Imaging. Nano Letters, 2014, 14, 4413-4417.	9.1	94
27	Understanding Photoluminescence of Monodispersed Crystalline Anatase TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2014, 118, 9726-9732.	3.1	46
28	Multisegmented nanotubes by surface-selective atomic layer deposition. Journal of Materials Chemistry C, 2013, 1, 621-625.	5.5	11
29	Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. Nanoscale, 2013, 5, 5825.	5.6	7
30	Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties. Journal of Materials Chemistry A, 2013, 1, 14080.	10.3	26
31	Visualization of three dimensional domain structures in ferroelectric PbTiO3 nanotubes. Applied Physics Letters, 2013, 103, .	3.3	15
32	Direct patterning of metal oxides by hard templates and atomic layer deposition. International Journal of Nanotechnology, 2013, 10, 692.	0.2	1
33	Contact area lithography and pattern transfer of self-assembled organic monolayers on SiO2/Si substrates. Chemical Communications, 2011, 47, 5145.	4.1	8
34	High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing. Journal of Materials Chemistry, 2011, 21, 1102-1108.	6.7	163
35	Surface modification and fabrication of 3D nanostructures by atomic layer deposition. MRS Bulletin, 2011, 36, 887-897.	3.5	59
36	Bias-Stress-Stable Solution-Processed Oxide Thin Film Transistors. ACS Applied Materials & Interfaces, 2010, 2, 611-615.	8.0	138

CHANGDEUCK BAE

#	Article	IF	CITATIONS
37	Fabrication and applications of metal-oxide nano-tubes. Jom, 2010, 62, 44-49.	1.9	25
38	Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors. Journal of Materials Chemistry, 2010, 20, 3877.	6.7	51
39	Aging Dynamics of Solution-Processed Amorphous Oxide Semiconductor Field Effect Transistors. ACS Applied Materials & Interfaces, 2010, 2, 626-632.	8.0	35
40	Hierarchical Titania Nanotubes with Self-Branched Crystalline Nanorods. ACS Applied Materials & Interfaces, 2010, 2, 1581-1587.	8.0	25
41	Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Applied Physics Letters, 2009, 94, 032907.	3.3	94
42	Nanoscale Ampoule Fabrication by Capillary Autoclosing. Small, 2009, 5, 1936-1941.	10.0	5
43	Controlled Fabrication of Multiwall Anatase TiO ₂ Nanotubular Architectures. Chemistry of Materials, 2009, 21, 2574-2576.	6.7	51
44	Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. Chemistry of Materials, 2008, 20, 756-767.	6.7	289
45	Template-directed gas-phase fabrication of oxide nanotubes. Journal of Materials Chemistry, 2008, 18, 1362.	6.7	57
46	Facile Route to Aligned One-Dimensional Arrays of Colloidal Nanoparticles. Chemistry of Materials, 2007, 19, 1531-1533.	6.7	12
47	Fabrication of Monodisperse Asymmetric Colloidal Clusters by Using Contact Area Lithography (CAL). Journal of the American Chemical Society, 2007, 129, 14232-14239.	13.7	44
48	Effects of ion damage on the surface of ITO films during plasma treatment. Applied Surface Science, 2007, 253, 8928-8932.	6.1	16
49	Contact Area Lithography (CAL):Â A New Approach to Direct Formation of Nanometric Chemical Patterns. Chemistry of Materials, 2006, 18, 1085-1088.	6.7	45
50	Characterization of self-assembling isolated ferroelectric domains by scanning force microscopy. Ultramicroscopy, 2004, 100, 339-346.	1.9	5
51	Fabrication of Isolated Ferroelectric Domains in Nano-Scale. Integrated Ferroelectrics, 2003, 59, 1521-1527.	0.7	1