Byram W Bridle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6383996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Addition of an Fc-IgG induces receptor clustering and increases the in vitro efficacy and in vivo anti-tumor properties of the thrombospondin-1 type I repeats (3TSR) in a mouse model of advanced stage ovarian cancer. Gynecologic Oncology, 2022, 164, 154-169.	0.6	10
2	AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines, 2022, 10, 362.	1.4	3
3	Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. , 2022, 10, e004335.		16
4	How Does Severe Acute Respiratory Syndrome-Coronavirus-2 Affect the Brain and Its Implications for the Vaccines Currently in Use. Vaccines, 2022, 10, 1.	2.1	20
5	Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells, 2022, 11, 1322.	1.8	7
6	Combining vanadyl sulfate with Newcastle disease virus potentiates rapid innate immune-mediated regression with curative potential in murine cancer models. Molecular Therapy - Oncolytics, 2021, 20, 306-324.	2.0	12
7	Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. International Journal of Molecular Sciences, 2021, 22, 4726.	1.8	17
8	Disruption of Type I Interferon Signaling Causes Sexually Dimorphic Dysregulation of Anti-Viral Cytokines. Cytokine: X, 2021, 3, 100053.	0.5	1
9	Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models. Journal of Visualized Experiments, 2021, , .	0.2	9
10	Cytokine Storm Syndrome in SARS-CoV-2 Infections: A Functional Role of Mast Cells. Cells, 2021, 10, 1761.	1.8	34
11	Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Scientific Reports, 2021, 11, 15290.	1.6	0
12	Production and purification of high-titer OrfV for preclinical studies in vaccinology and cancer therapy. Molecular Therapy - Methods and Clinical Development, 2021, 23, 434-447.	1.8	7
13	Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines, 2021, 9, 1186.	1.4	7
14	The Role of Type I Interferon Signaling in Regulating Cytokine Production and Cell Survival in Bone Marrow-Derived Macrophages. Viral Immunology, 2021, 34, 470-482.	0.6	3
15	Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines, 2021, 9, 979.	2.1	13
16	Macrophage Depletion via Clodronate Pretreatment Reduces Transgene Expression from AAV Vectors In Vivo. Viruses, 2021, 13, 2002.	1.5	4
17	The Roles of Neutrophils in Cytokine Storms. Viruses, 2021, 13, 2318.	1.5	27
18	Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal Development. Vaccines, 2021, 9, 1351.	2.1	7

BYRAM W BRIDLE

#	Article	IF	CITATIONS
19	Mast Cell Tryptase and Implications for SARS-CoV-2 Pathogenesis. BioMed, 2021, 1, 136-149.	0.6	6
20	Using a Prime-Boost Vaccination Strategy That Proved Effective for High Resolution Epitope Mapping to Characterize the Elusive Immunogenicity of Survivin. Cancers, 2021, 13, 6270.	1.7	0
21	AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Therapy, 2020, 27, 356-367.	2.2	7
22	Type I Interferon α/β Receptor-Mediated Signaling Negatively Regulates Antiviral Cytokine Responses in Murine Bone-Marrow-Derived Mast Cells and Protects the Cells from Virus-Induced Cell Death. International Journal of Molecular Sciences, 2020, 21, 9041.	1.8	3
23	AAV Vectored Immunoprophylaxis for Filovirus Infections. Tropical Medicine and Infectious Disease, 2020, 5, 169.	0.9	11
24	Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning. , 2020, 8, e000981.		15
25	Characterization of the Impact of Oncolytic Vesicular Stomatitis Virus on the Trafficking, Phenotype, and Antigen Presentation Potential of Neutrophils and Their Ability to Acquire a Non-Structural Viral Protein. International Journal of Molecular Sciences, 2020, 21, 6347.	1.8	11
26	Tumour vasculature: Friend or foe of oncolytic viruses?. Cytokine and Growth Factor Reviews, 2020, 56, 69-82.	3.2	12
27	Probiotic Lactobacilli Limit Avian Influenza Virus Subtype H9N2 Replication in Chicken Cecal Tonsil Mononuclear Cells. Vaccines, 2020, 8, 605.	2.1	7
28	Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. Methods in Molecular Biology, 2020, 2058, 191-211.	0.4	7
29	Quantifying Antibody Responses Induced by Antigen-Agnostic Immunotherapies. Molecular Therapy - Methods and Clinical Development, 2019, 14, 189-196.	1.8	3
30	Myeloid Cells during Viral Infections and Inflammation. Viruses, 2019, 11, 168.	1.5	80
31	Quantifying Antigen-Specific T Cell Responses When Using Antigen-Agnostic Immunotherapies. Molecular Therapy - Methods and Clinical Development, 2019, 13, 154-166.	1.8	15
32	Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clinical Cancer Research, 2019, 25, 1624-1638.	3.2	49
33	Production and Purification of High-Titer Newcastle Disease Virus for Use in Preclinical Mouse Models of Cancer. Molecular Therapy - Methods and Clinical Development, 2018, 9, 181-191.	1.8	32
34	Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. Journal of Immunology, 2018, 200, 450-458.	0.4	78
35	Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virotherapy, 2018, Volume 7, 117-128.	6.0	34
36	Use of Precision-Cut Lung Slices as an ExÂVivo Tool for Evaluating Viruses and Viral Vectors for Gene and Oncolytic Therapy. Molecular Therapy - Methods and Clinical Development, 2018, 10, 245-256.	1.8	38

BYRAM W BRIDLE

#	Article	IF	CITATIONS
37	Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology, 2017, 152, 175-184.	2.0	82
38	Immune responses in the thyroid cancer microenvironment: making immunotherapy a possible mission. Endocrine-Related Cancer, 2017, 24, T311-T329.	1.6	23
39	Enhancing Immune Responses to Cancer Vaccines Using Multi-Site Injections. Scientific Reports, 2017, 7, 8322.	1.6	18
40	Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Scientific Reports, 2017, 7, 15738.	1.6	11
41	Replication and Oncolytic Activity of an Avian Orthoreovirus in Human Hepatocellular Carcinoma Cells. Viruses, 2017, 9, 90.	1.5	15
42	Privileged Antigen Presentation in Splenic B Cell Follicles Maximizes T Cell Responses in Prime-Boost Vaccination. Journal of Immunology, 2016, 196, 4587-4595.	0.4	35
43	Maraba Virus as a Potent Oncolytic Vaccine Vector. Molecular Therapy, 2014, 22, 420-429.	3.7	134
44	HDAC Inhibition Suppresses Primary Immune Responses, Enhances Secondary Immune Responses, and Abrogates Autoimmunity During Tumor Immunotherapy. Molecular Therapy, 2013, 21, 887-894.	3.7	98
45	Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 ⁺ T-cell responses to anticancer vaccines. Oncolmmunology, 2013, 2, e26013.	2.1	51
46	Delivery of viral-vectored vaccines by B cells represents a novel strategy to accelerate CD8+ T-cell recall responses. Blood, 2013, 121, 2432-2439.	0.6	36
47	ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic. Molecular Therapy, 2012, 20, 1148-1157.	3.7	59
48	Neuroendocrine cancer vaccines in clinical trials. Expert Review of Vaccines, 2011, 10, 811-823.	2.0	6
49	Immunotherapy Can Reject Intracranial Tumor Cells without Damaging the Brain despite Sharing the Target Antigen. Journal of Immunology, 2010, 184, 4269-4275.	0.4	16
50	Potentiating Cancer Immunotherapy Using an Oncolytic Virus. Molecular Therapy, 2010, 18, 1430-1439.	3.7	146
51	Combining oncolytic virotherapy and tumour vaccination. Cytokine and Growth Factor Reviews, 2010, 21, 143-148.	3.2	32
52	Recombinant Vesicular Stomatitis Virus Transduction of Dendritic Cells Enhances Their Ability to Prime Innate and Adaptive Antitumor Immunity. Molecular Therapy, 2009, 17, 1465-1472.	3.7	66
53	Vesicular Stomatitis Virus as a Novel Cancer Vaccine Vector to Prime Antitumor Immunity Amenable to Rapid Boosting With Adenovirus. Molecular Therapy, 2009, 17, 1814-1821.	3.7	95