Yutaka Kazoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6383782/publications.pdf

Version: 2024-02-01

304743 276875 1,760 62 22 41 h-index citations g-index papers 64 64 64 2108 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Scientific Reports, 2015, 5, 11141.	3.3	464
2	Extended-Nanofluidics: Fundamental Technologies, Unique Liquid Properties, and Application in Chemical and Bio Analysis Methods and Devices. Analytical Chemistry, 2014, 86, 4068-4077.	6.5	108
3	Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion. Journal of Physical Chemistry Letters, 2012, 3, 2447-2452.	4.6	94
4	Enhancement of Proton Mobility in Extendedâ€Nanospace Channels. Angewandte Chemie - International Edition, 2012, 51, 3573-3577.	13.8	67
5	Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sensors and Actuators B: Chemical, 2010, 147, 359-365.	7.8	51
6	Development of a Measurement Technique for Ion Distribution in an Extended Nanochannel by Super-Resolution-Laser-Induced Fluorescence. Analytical Chemistry, 2011, 83, 8152-8157.	6.5	51
7	Contribution of Soluble Forms of Programmed Death 1 and Programmed Death Ligand 2 to Disease Severity and Progression in Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 1879-1890.	5.6	47
8	Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process. Journal of Flow Chemistry, 2012, 1, 3-12.	1.9	43
9	Evanescent Wave-Based Particle Tracking Velocimetry for Nanochannel Flows. Analytical Chemistry, 2013, 85, 10780-10786.	6.5	43
10	Experimental Study of the Effect of External Electric Fields on Interfacial Dynamics of Colloidal Particles. Langmuir, 2011, 27, 11481-11488.	3.5	39
11	Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Analyst, The, 2019, 144, 7200-7208.	3.5	39
12	Measurements of the near-wall hindered diffusion of colloidal particles in the presence of an electric field. Applied Physics Letters, $2011,99,\ldots$	3.3	38
13	Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nature Communications, 2021, 12, 5947.	12.8	38
14	Dielectric Constant of Liquids Confined in the Extended Nanospace Measured by a Streaming Potential Method. Analytical Chemistry, 2015, 87, 1475-1479.	6.5	37
15	Waterâ€vapor permeability control of PDMS by the dispersion of collagen powder. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 442-449.	1.4	34
16	Femtoliter nanofluidic valve utilizing glass deformation. Lab on A Chip, 2019, 19, 1686-1694.	6.0	34
17	Single-cell-level protein analysis revealing the roles of autoantigen-reactive B lymphocytes in autoimmune disease and the murine model. ELife, $2021,10,10$	6.0	32
18	Numerical Simulation of Proton Distribution with Electric Double Layer in Extended Nanospaces. Analytical Chemistry, 2013, 85, 4468-4474.	6.5	30

#	Article	IF	Citations
19	Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device. Micromachines, 2020, 11, 995.	2.9	30
20	Effect of Ion Motion on Zeta-Potential Distribution at Microchannel Wall Obtained from Nanoscale Laser-Induced Fluorescence. Analytical Chemistry, 2007, 79, 6727-6733.	6.5	28
21	An active valve incorporated into a microchip using a high strain electroactive polymer. Sensors and Actuators B: Chemical, 2013, 184, 163-169.	7.8	27
22	From Extended Nanofluidics to an Autonomous Solarâ€Lightâ€Driven Micro Fuelâ€Cell Device. Angewandte Chemie - International Edition, 2017, 56, 8130-8133.	13.8	25
23	Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience (Switzerland), 2019, 9, 1017-1024.	3.1	24
24	Behavior of Nanoparticles in Extended Nanospace Measured by Evanescent Wave-Based Particle Velocimetry. Analytical Chemistry, 2015, 87, 4087-4091.	6.5	22
25	Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Applied Physics Letters, 2011, 99, 123115.	3.3	21
26	B Cell Depletion Inhibits Fibrosis via Suppression of Profibrotic Macrophage Differentiation in a Mouse Model of Systemic Sclerosis. Arthritis and Rheumatology, 2021, 73, 2086-2095.	5.6	17
27	Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. Lab on A Chip, 2019, 19, 3844-3852.	6.0	16
28	A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices. Micromachines, 2020, 11 , 804.	2.9	16
29	Development of microfluidic droplet shooter and its application to interface for mass spectrometry. Sensors and Actuators B: Chemical, 2021, 340, 129957.	7.8	15
30	Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics. Analyst, The, 2020, 145, 2669-2675.	3.5	14
31	Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis. Analytical Chemistry, 2022, 94, 10074-10081.	6.5	13
32	Fluorescence imaging technique of surface electrostatic potential using evanescent wave illumination. Applied Physics Letters, 2009, 95, .	3.3	12
33	Evanescent Wave-Based Flow Diagnostics. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	1.5	11
34	Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics. Lab on A Chip, 2022, 22, 1162-1170.	6.0	11
35	Micro heat pipe device utilizing extended nanofluidics. RSC Advances, 2017, 7, 50591-50597.	3.6	10
36	Enzyme-linked immunosorbent assay utilizing thin-layered microfluidics. Analyst, The, 2019, 144, 6625-6634.	3.5	10

#	Article	IF	CITATIONS
37	Implementation of a nanochannel open/close valve into a glass nanofluidic device. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	10
38	Lipid Bilayer-Modified Nanofluidic Channels of Sizes with Hundreds of Nanometers for Characterization of Confined Water and Molecular/Ion Transport. Journal of Physical Chemistry Letters, 2020, 11, 5756-5762.	4.6	10
39	From Extended Nanofluidics to an Autonomous Solarâ€Lightâ€Driven Micro Fuelâ€Cell Device. Angewandte Chemie, 2017, 129, 8242-8245.	2.0	9
40	Rapid alteration of serum interleukinâ€6 levels may predict the reactivity of i.v. cyclophosphamide pulse therapy in systemic sclerosisâ€associated interstitial lung disease. Journal of Dermatology, 2018, 45, 1221-1224.	1,2	8
41	Dry etching and low-temperature direct bonding process of lithium niobate wafer for fabricating micro/nano channel device., 2017,,.		6
42	Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel. Micromachines, 2018, 9, 423.	2.9	5
43	Generation of femtoliter liquid droplets in gas phase by microfluidic droplet shooter. Microfluidics and Nanofluidics, $2021, 25, 1$.	2.2	5
44	Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry. Analytical Sciences, 2022, 38, 281-287.	1.6	5
45	Picoliter liquid handling at gas/liquid interface by surface and geometry control in a micro-nanofluidic device. Journal of Micromechanics and Microengineering, 2022, 32, 024001.	2.6	5
46	Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging. Journal of Fluid Science and Technology, 2007, 2, 429-440.	0.6	4
47	High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel. Micromachines, 2016, 7, 142.	2.9	4
48	Time resolution effect on the apparent particle dynamics confined in a nanochannel evaluated by the single particle tracking subject to Brownian motion. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	4
49	Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows. Analytical Chemistry, 2021, 93, 13260-13267.	6.5	4
50	Reply to Comment on "Development of Measurement Technique for Ion Distribution in Extended Nanochannel by Super Resolution-Laser Induced Fluorescence― Analytical Chemistry, 2012, 84, 10855-10855.	6.5	3
51	Micro and Extended-Nano Fluidics and Optics for Chemical and Bioanalytical Technology. Nano-optics and Nanophotonics, 2013, , 121-164.	0.2	3
52	Combined Laser-Based Measurements for Micro- and Nanoscale Transport Phenomena. Heat Transfer Engineering, 2014, 35, 125-141.	1.9	2
53	Advances in Nanofluidics. Micromachines, 2021, 12, 427.	2.9	2
54	Motion of submicrometer particles in micrometer-size channel measured by defocusing nano-particle image velocimetry. Journal of Applied Physics, 2022, 131, .	2.5	2

#	Article	lF	CITATIONS
55	Time-Series Velocity Measurements of Electroosmotic Flows with Nonuniform Zeta-Potential Using Evanescent Wave and Volume Illumination(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 1455-1463.	0.2	1
56	Particle-wall interactions in micro/nanofluidics. , 2012, , .		1
57	Innenrýcktitelbild: Enhancement of Proton Mobility in Extended-Nanospace Channels (Angew. Chem.) Tj ETQq1	1 0.78431 2.0	.4 rgBT /0ve
58	Single B cell analysis can reveal distinct cytokine profile of autoreactive B cells in systemic sclerosis. Journal of Dermatological Science, 2017, 86, e7-e8.	1.9	1
59	Ferroelectric Extended Nanofluidic Channels for Roomâ€Temperature Microfuel Cells. Advanced Materials Technologies, 2019, 4, 1900252.	5. 8	1
60	Picoliter liquid operations in nanofluidic channel utilizing an open/close valve with nanoscale curved structure mimicking glass deflection. Journal of Micromechanics and Microengineering, 2022, 32, 055009.	2.6	1
61	Inside Back Cover: Enhancement of Proton Mobility in Extendedâ€Nanospace Channels (Angew. Chem. Int.) Tj ETÇ	0 <u>91</u> 1 0.78	4314 rgB <mark>T</mark>
62	Stable Formation of aqueous/organic parallel two-phase flow in nanochannels with partial surface modification. Analytical Sciences, 2021, 37, 1611-1616.	1.6	0