George G Waldbusser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6383734/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resilience and adaptive capacity of Oregon's fishing community: Cumulative impacts of climate change and the graying of the fleet. Marine Policy, 2021, 126, 104424.	3.2	14
2	Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nature Geoscience, 2020, 13, 441-447.	12.9	44
3	The dynamic ocean acidification manipulation experimental system: Separating carbonate variables and simulating natural variability in laboratory flowâ€through experiments. Limnology and Oceanography: Methods, 2019, 17, 343-361.	2.0	2
4	Controls on Carbonate System Dynamics in a Coastal Plain Estuary: A Modeling Study. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 61-78.	3.0	51
5	JSR Special Section Oa Primer and Introduction. Journal of Shellfish Research, 2019, 38, 707.	0.9	1
6	Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters. Geochemistry, Geophysics, Geosystems, 2018, 19, 1064-1079.	2.5	14
7	Seagrass habitat metabolism increases short-term extremes and long-term offset of CO ₂ under future ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3870-3875.	7.1	111
8	Ocean acidification stress index for shellfish (OASIS): Linking Pacific oyster larval survival and exposure to variable carbonate chemistry regimes. Elementa, 2018, 6, .	3.2	19
9	Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Scientific Reports, 2017, 7, 4526.	3.3	66
10	The Carbonate Chemistry of the "Fattening Line,―Willapa Bay, 2011–2014. Estuaries and Coasts, 2017, 4 173-186.	¹⁰ , _{2.2}	27
11	Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 2017, 8, 369.	12.8	128
12	Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Marine Ecology - Progress Series, 2017, 563, 81-94.	1.9	22
13	Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnology and Oceanography, 2016, 61, 1969-1983.	3.1	62
14	Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel <i>Perumytilus purpuratus</i> . Limnology and Oceanography, 2016, 61, 969-983.	3.1	22
15	Calcium carbonate saturation state: on myths and this or that stories. ICES Journal of Marine Science, 2016, 73, 563-568.	2.5	68
16	Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?. PLoS ONE, 2016, 11, e0164699.	2.5	64
17	A longitudinal study of Pacific oyster (Crassostrea gigas) larval development: isotope shifts during early shell formation reveal sub-lethal energetic stress. Marine Ecology - Progress Series, 2016, 555, 109-123.	1.9	7
18	A post-larval stage-based model of hard clam Mercenaria mercenaria development in response to multiple stressors: temperature and acidification severity. Marine Ecology - Progress Series, 2016, 558, 35-49.	1.9	18

#	Article	IF	CITATIONS
19	Perception and Response of the U.S. West Coast Shellfish Industry to Ocean Acidification: The Voice of the Canaries in the Coal Mine. Journal of Shellfish Research, 2015, 34, 565-572.	0.9	26
20	Impacts of Coastal Acidification on the Pacific Northwest Shellfish Industry and Adaptation Strategies Implemented in Response. Oceanography, 2015, 25, 146-159.	1.0	179
21	Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 2015, 5, 207-214.	18.8	265
22	Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change, 2015, 5, 273-280.	18.8	352
23	Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae. PLoS ONE, 2015, 10, e0128376.	2.5	140
24	Modeling lugworm irrigation behavior effects on sediment nitrogen cycling. Marine Ecology - Progress Series, 2015, 534, 121-134.	1.9	7
25	Ocean Acidification in the Coastal Zone from an Organism's Perspective: Multiple System Parameters, Frequency Domains, and Habitats. Annual Review of Marine Science, 2014, 6, 221-247.	11.6	330
26	Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds. Estuaries and Coasts, 2013, 36, 18-27.	2.2	74
27	A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophysical Research Letters, 2013, 40, 2171-2176.	4.0	183
28	Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology, 2013, 94, 895-903.	3.2	68
29	The Pacific oyster, <i>Crassostrea gigas</i> , shows negative correlation to naturally elevated carbon dioxide levels: Implications for nearâ€ŧerm ocean acidification effects. Limnology and Oceanography, 2012, 57, 698-710.	3.1	424
30	Burrow patchiness and oxygen fluxes in bioirrigated sediments. Journal of Experimental Marine Biology and Ecology, 2012, 412, 81-86.	1.5	7
31	Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH. Estuaries and Coasts, 2011, 34, 221-231.	2.2	224
32	Oyster Shell Dissolution Rates in Estuarine Waters: Effects of pH and Shell Legacy. Journal of Shellfish Research, 2011, 30, 659-669.	0.9	109
33	Mitigating Local Causes of Ocean Acidification with Existing Laws. Science, 2011, 332, 1036-1037.	12.6	111
34	Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp Marine Ecology - Progress Series, 2010, 417, 171-182.	1.9	102
35	Evidence of infaunal effects on porewater advection and biogeochemistry in permeable sediments: A proposed infaunal functional group framework. Journal of Marine Research, 2009, 67, 503-532.	0.3	9
36	Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography, 2009, 54, 1037-1047.	3.1	166

#	Article	IF	CITATIONS
37	Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Marine Ecology - Progress Series, 2006, 311, 217-231.	1.9	47
38	Plant-animal-microbe interactions in coastal sediments: Closing the ecological loop. Coastal and Estuarine Studies, 2005, , 233-249.	0.4	9