Luca Fornelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/638366/publications.pdf

Version: 2024-02-01

				182225	1	198040
53		2,973		30		52
papers		citations		h-index		g-index
57		57		57		3222
all docs		docs citations		times ranked		citing authors
	papers 57	papers 57	papers citations 57 57	53 2,973 citations 57 57	papers citations h-index 57 57 57	53 2,973 30 papers citations h-index 57 57 57

#	Article	IF	CITATIONS
1	The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells. Science, 2022, 375, 411-418.	6.0	64
2	Characterization of large intact protein ions by mass spectrometry: What directions should we follow?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140758.	1.1	11
3	Structural and Functional Characterization of a Novel Scorpion Toxin that Inhibits NaV1.8 via Interactions With the DI Voltage Sensor and DII Pore Module. Frontiers in Pharmacology, 2022, 13, .	1.6	2
4	Sequential Ion–Ion Reactions for Enhanced Gas-Phase Sequencing of Large Intact Proteins in a Tribrid Orbitrap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2021, 32, 2334-2345.	1,2	19
5	Mass spectrometryâ€based proteomic platforms for better understanding of SARSâ€CoVâ€2 induced pathogenesis and potential diagnostic approaches. Proteomics, 2021, 21, e2000279.	1.3	19
6	Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS Journal, 2021, 288, 6683-6699.	2.2	7
7	Identification and Characterization of Novel Proteins from Arizona Bark Scorpion Venom That Inhibit Nav1.8, a Voltage-Gated Sodium Channel Regulator of Pain Signaling. Toxins, 2021, 13, 501.	1.5	4
8	Spectrum of Apolipoprotein AI and Apolipoprotein AII Proteoforms and Their Associations With Indices of Cardiometabolic Health: The CARDIA Study. Journal of the American Heart Association, 2021, 10, e019890.	1.6	12
9	Evolutionary Dynamics of Indels in SARS-CoV-2 Spike Glycoprotein. Evolutionary Bioinformatics, 2021, 17, 117693432110646.	0.6	5
10	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1783-1802.	1.2	67
11	Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Molecular and Cellular Proteomics, 2020, 19, 405-420.	2.5	38
12	Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. Journal of Proteome Research, 2020, 19, 938-948.	1.8	8
13	Defining the NSD2 interactome: PARP1 PARylation reduces NSD2 histone methyltransferase activity and impedes chromatin binding. Journal of Biological Chemistry, 2019, 294, 12459-12471.	1.6	16
14	Direct measurement of light and heavy antibody chains using ion mobility and middle-down mass spectrometry. MAbs, 2019, 11, 1351-1357.	2.6	22
15	Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nature Methods, 2019, 16, 587-594.	9.0	241
16	Proton Transfer Charge Reduction Enables High-Throughput Top-Down Analysis of Large Proteoforms. Analytical Chemistry, 2019, 91, 15732-15739.	3.2	45
17	Structural Analysis of Monoclonal Antibodies by Ultrahigh Resolution MALDI In-Source Decay FT-ICR Mass Spectrometry. Analytical Chemistry, 2019, 91, 2079-2085.	3.2	48
18	A comprehensive pipeline for translational top-down proteomics from a single blood draw. Nature Protocols, 2019, 14, 119-152.	5.5	62

#	Article	IF	Citations
19	Precise characterization of KRAS4b proteoforms in human colorectal cells and tumors reveals mutation/modification cross-talk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4140-4145.	3.3	74
20	A Targeted, Differential Top-Down Proteomic Methodology for Comparison of ApoA-I Proteoforms in Individuals with High and Low HDL Efflux Capacity. Journal of Proteome Research, 2018, 17, 2156-2164.	1.8	30
21	Chemical-Mediated Digestion: An Alternative Realm for Middle-down Proteomics?. Journal of Proteome Research, 2018, 17, 2005-2016.	1.8	12
22	Top-down proteomics: Where we are, where we are going?. Journal of Proteomics, 2018, 175, 3-4.	1.2	47
23	The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. Journal of the American Society for Mass Spectrometry, 2018, 29, 150-157.	1.2	31
24	Top-down characterization of endogenous protein complexes with native proteomics. Nature Chemical Biology, 2018, 14, 36-41.	3.9	115
25	Multiplexed Middle-Down Mass Spectrometry as a Method for Revealing Light and Heavy Chain Connectivity in a Monoclonal Antibody. Analytical Chemistry, 2018, 90, 12527-12535.	3.2	38
26	Accurate Sequence Analysis of a Monoclonal Antibody by Top-Down and Middle-Down Orbitrap Mass Spectrometry Applying Multiple Ion Activation Techniques. Analytical Chemistry, 2018, 90, 8421-8429.	3.2	100
27	Chromatographic efficiency and selectivity in top-down proteomics of histones. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1044-1045, 47-53.	1.2	8
28	Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. Journal of Proteomics, 2017, 159, 67-76.	1.2	47
29	Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1203-1215.	1.2	49
30	Advancing Top-down Analysis of the Human Proteome Using a Benchtop Quadrupole-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2017, 16, 609-618.	1.8	68
31	Bioinformatics Analysis of Top-Down Mass Spectrometry Data with ProSight Lite. Methods in Molecular Biology, 2017, 1558, 381-394.	0.4	27
32	Progress in Top-Down Proteomics and the Analysis of Proteoforms. Annual Review of Analytical Chemistry, 2016, 9, 499-519.	2.8	427
33	Mapping Proteoforms and Protein Complexes From King Cobra Venom Using Both Denaturing and Native Top-down Proteomics. Molecular and Cellular Proteomics, 2016, 15, 2423-2434.	2.5	69
34	An informatic framework for decoding protein complexes by top-down mass spectrometry. Nature Methods, 2016, 13, 237-240.	9.0	59
35	Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. Journal of Proteome Research, 2016, 15, 976-982.	1.8	89
36	Targeted analysis of recombinant NF kappa B (RelA/p65) by denaturing and native top down mass spectrometry. Journal of Proteomics, 2016, 134, 76-84.	1.2	10

#	Article	IF	CITATIONS
37	Unabridged Analysis of Human Histone H3 by Differential Top-Down Mass Spectrometry Reveals Hypermethylated Proteoforms from MMSET/NSD2 Overexpression. Molecular and Cellular Proteomics, 2016, 15, 776-790.	2.5	56
38	Ion Coalescence in Fourier Transform Mass Spectrometry: Should We Worry about This in Shotgun Proteomics?. European Journal of Mass Spectrometry, 2015, 21, 459-470.	0.5	14
39	Probing asymmetric charge partitioning of protein oligomers during tandem mass spectrometry. International Journal of Mass Spectrometry, 2015, 390, 132-136.	0.7	7
40	Distinguishing Analyte from Noise Components in Mass Spectra of Complex Samples: Where to Cut the Noise?. Analytical Chemistry, 2014, 86, 3308-3316.	3.2	44
41	Advantages of Extended Bottom-Up Proteomics Using Sap9 for Analysis of Monoclonal Antibodies. Analytical Chemistry, 2014, 86, 9945-9953.	3.2	50
42	Middle-Down Analysis of Monoclonal Antibodies with Electron Transfer Dissociation Orbitrap Fourier Transform Mass Spectrometry. Analytical Chemistry, 2014, 86, 3005-3012.	3.2	147
43	Top-down analysis of 30–80 kDa proteins by electron transfer dissociation time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 8505-8514.	1.9	34
44	Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chemical Society Reviews, 2013, 42, 5014.	18.7	175
45	Practical Considerations for Improving the Productivity of Mass Spectrometry-based Proteomics. Chimia, 2013, 67, 244.	0.3	10
46	Analysis of Intact Monoclonal Antibody IgG1 by Electron Transfer Dissociation Orbitrap FTMS. Molecular and Cellular Proteomics, 2012, 11, 1758-1767.	2.5	137
47	In-Spray Supercharging of Peptides and Proteins in Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 4647-4651.	3.2	74
48	Observation of ion coalescence in Orbitrap Fourier transform mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 1711-1717.	0.7	65
49	Glycan variability on a recombinant IgG antibody transiently produced in HEK-293E cells. New Biotechnology, 2012, 29, 471-476.	2.4	28
50	Structural Analysis of Intact Monoclonal Antibodies by Electron Transfer Dissociation Mass Spectrometry. Analytical Chemistry, 2011, 83, 8919-8927.	3.2	121
51	High-Resolution and Tandem Mass Spectrometry – the Indispensable Tools of the XXI Century. Chimia, 2011, 65, 641.	0.3	4
52	Deamidation and Transamidation of Substanceâ€P by Tissue Transglutaminase Revealed by Electronâ€Capture Dissociation Fourier Transform Mass Spectrometry. Chemistry - A European Journal, 2011, 17, 486-497.	1.7	13
53	Inside Cover: Deamidation and Transamidation of Substanceâ€P by Tissue Transglutaminase Revealed by Electronâ€Capture Dissociation Fourier Transform Mass Spectrometry (Chem. Eur. J. 2/2011). Chemistry - A European Journal, 2011, 17, 398-398.	1.7	0