Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6383290/publications.pdf

Version: 2024-02-01

186265 182427 2,680 53 28 51 h-index citations g-index papers 54 54 54 2357 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endogenous peroxynitrite activated fluorescent probe for revealing antiâ€ŧuberculosis drug induced hepatotoxicity. Chinese Chemical Letters, 2022, 33, 1584-1588.	9.0	36
2	Over 17.7% efficiency ternary-blend organic solar cells with low energy-loss and good thickness-tolerance. Chemical Engineering Journal, 2022, 428, 129276.	12.7	110
3	Diketopyrrolopyrrole-based sensor for over-expressed peroxynitrite in drug-induced hepatotoxicity via ratiometric fluorescence imaging. Sensors and Actuators B: Chemical, 2022, 352, 130992.	7.8	38
4	Resorufin-based fluorescent probe with elevated water solubility for visualizing fluctuant peroxynitrite in progression of inflammation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120620.	3.9	25
5	Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulkâ∈Heterojunction or Layerâ∈Byâ∈Layer Structure. Small, 2022, 18, e2104215.	10.0	100
6	BODIPY-based near-infrared fluorescent probe for diagnosis drug-induced liver injury via imaging of HClO in cells and in vivo. Dyes and Pigments, 2022, 199, 110073.	3.7	29
7	Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Hydrogen Sulfide in Food Spoilage, Living Cells, and Zebrafish. Journal of Agricultural and Food Chemistry, 2022, 70, 3047-3055.	5.2	55
8	An activatable fluorescent probe for monitoring the up-regulation of peroxynitrite in drug-induced hepatotoxicity model. Dyes and Pigments, 2022, 203, 110341.	3.7	7
9	An activatable reporter for fluorescence imaging drug-induced liver injury in diverse cell lines and in vivo. Dyes and Pigments, 2022, 203, 110345.	3.7	7
10	Red-emitting Fluorescent Probe for Visualizing Endogenous Peroxynitrite in Live Cells and Inflamed Mouse Model. Journal of Molecular Structure, 2022, 1265, 133443.	3.6	3
11	Meso-pyridinium substituted BODIPY dyes as mitochondria-targeted probes for the detection of cysteine in living cells and in vivo. Dyes and Pigments, 2021, 187, 109089.	3.7	48
12	Organic photovoltaics with 300 nm thick ternary active layers exhibiting 15.6% efficiency. Journal of Materials Chemistry C, 2021, 9, 9892-9898.	5.5	43
13	Highly sensitive all-polymer photodetectors with ultraviolet-visible to near-infrared photo-detection and their application as an optical switch. Journal of Materials Chemistry C, 2021, 9, 5349-5355.	5.5	45
14	Ternary Organic Photovoltaic Cells Exhibiting 17.59% Efficiency with Two Compatible Y6 Derivations as Acceptor. Solar Rrl, 2021, 5, 2100007.	5.8	81
15	BODIPYâ€based Fluorescent Probe for Fast Detection of Hydrogen Sulfide and Lysosomeâ€targeting Applications in Living Cells. Chemistry - an Asian Journal, 2021, 16, 850-855.	3.3	19
16	Smart Strategy: Transparent Hole-Transporting Polymer as a Regulator to Optimize Photomultiplication-type Polymer Photodetectors. ACS Applied Materials & Diterfaces, 2021, 13, 21565-21572.	8.0	55
17	Over 17.6% Efficiency Organic Photovoltaic Devices with Two Compatible Polymer Donors. Solar Rrl, 2021, 5, 2100175.	5.8	49
18	A resorufin-based red-emitting fluorescent probe with high selectivity for tracking endogenous peroxynitrite in living cells and inflammatory mice. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119502.	3.9	17

#	Article	IF	CITATIONS
19	Recent development of reactional small-molecule fluorescent probes based on resorufin. Dyes and Pigments, 2021, 191, 109351.	3.7	29
20	Two Y6 Derivations with Similar Chemical Structure As One Alloyed Acceptor Enable Efficient Ternary-Blend Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 11761-11768.	5.1	8
21	Three asymmetric BODIPY derivatives as fluorescent probes for highly selective and sensitive detection of cysteine in living cells. Analytical Methods, 2021, 13, 2908-2914.	2.7	3
22	Over 17% Efficiency of Ternary Organic Photovoltaics Employing Two Acceptors with an Acceptor–Donor–Acceptor Configuration. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 57684-57692.	8.0	47
23	BODIPYâ€Based Fluorescent Probes for Biothiols. Chemistry - A European Journal, 2020, 26, 4172-4192.	3.3	155
24	A critical review on semitransparent organic solar cells. Nano Energy, 2020, 78, 105376.	16.0	247
25	A Critical Review on Efficient Thickâ€Film Organic Solar Cells. Solar Rrl, 2020, 4, 2000364.	5.8	80
26	Detecting Cysteine in Bioimaging with a Nearâ€Infrared Probe Based on a Novel Fluorescence Quenching Mechanism. ChemBioChem, 2020, 21, 3131-3136.	2.6	17
27	BODIPY-based Fluorescent Probe for the Detection of Cysteine in Living Cells. Analytical Sciences, 2020, 36, 1317-1322.	1.6	5
28	Selective Detection and Visualization of Exogenous/endogenous Hypochlorous Acid in Living Cells using a BODIPYâ€based Redâ€emitting Fluorescent Probe. Chemistry - an Asian Journal, 2020, 15, 770-774.	3.3	15
29	Frontispiece: BODIPYâ€Based Fluorescent Probes for Biothiols. Chemistry - A European Journal, 2020, 26,	3.3	1
30	A dual-response fluorescent probe for the discrimination of cysteine from glutathione and homocysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 1-7.	3.9	15
31	Homopropargyl as a new recognition moiety of a fluorescent probe for detection of palladium in living cells. Analytical Methods, 2019, 11, 4093-4098.	2.7	10
32	A Reactionâ€Based Fluorescent Probe for Imaging of Native Hypochlorous Acid. Chemistry - an Asian Journal, 2019, 14, 3893-3897.	3.3	13
33	Frontispiece: Development of Lysosomeâ€Targeted Fluorescent Probes for Cys by Regulating the Boronâ€dipyrromethene (BODIPY) Molecular Structure. Chemistry - A European Journal, 2019, 25, .	3.3	23
34	Development of Lysosomeâ€Targeted Fluorescent Probes for Cys by Regulating the Boronâ€dipyrromethene (BODIPY) Molecular Structure. Chemistry - A European Journal, 2019, 25, 11246-11256.	3.3	26
35	A water-soluble BODIPY-based fluorescent probe for rapid and selective detection of hypochlorous acid in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 569-575.	3.9	20
36	A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta, 2019, 195, 281-289.	5.5	71

#	Article	IF	CITATIONS
37	Intracellular endogenous glutathione detection and imaging by a simple and sensitive spectroscopic off–on probe. Analyst, The, 2018, 143, 2390-2396.	3.5	18
38	Ternary Nonfullerene Polymer Solar Cells with a Power Conversion Efficiency of 11.6% by Inheriting the Advantages of Binary Cells. ACS Energy Letters, 2018, 3, 555-561.	17.4	161
39	High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy, 2018, 45, 177-183.	16.0	193
40	Meso-heteroaryl BODIPY dyes as dual-responsive fluorescent probes for discrimination of Cys from Hcy and GSH. Sensors and Actuators B: Chemical, 2018, 260, 861-869.	7.8	68
41	A BODIPY-based dual-responsive turn-on fluorescent probe for NO and nitrite. Dyes and Pigments, 2018, 155, 276-283.	3.7	34
42	Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine. Sensors and Actuators B: Chemical, 2018, 257, 1076-1082.	7.8	98
43	A ratiometric fluorescent BODIPY-based probe for rapid and highly sensitive detection of cysteine in human plasma. Analyst, The, 2018, 143, 5728-5735.	3.5	27
44	BODIPY-based turn-on fluorescent probes for cysteine and homocysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 77-84.	3.9	35
45	A near-infrared BODIPY-based fluorescent probe for the detection of hydrogen sulfide in fetal bovine serum and living cells. RSC Advances, 2016, 6, 51304-51309.	3.6	21
46	A mitochondria-targeted turn-on fluorescent probe for the detection of glutathione in living cells. Biosensors and Bioelectronics, 2016, 85, 164-170.	10.1	104
47	A Turnâ€On Fluorescent Probe for Highly Selective and Sensitive Detection of Palladium. Chinese Journal of Chemistry, 2016, 34, 715-719.	4.9	17
48	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta, 2016, 146, 41-48.	5 . 5	29
49	Water-soluble BODIPY Derivative as a Highly Selective "Turn-on―Fluorescent Probe for Hydrogen Sulfide in Living Cells. Chemistry Letters, 2015, 44, 1524-1526.	1.3	15
50	Highly Selective and Sensitive 1-Amino BODIPY-Based Red Fluorescent Probe for Thiophenols with High Off-to-On Contrast Ratio. Analytical Chemistry, 2015, 87, 399-405.	6.5	111
51	A turn-on NIR fluorescent probe for the detection of homocysteine over cysteine. RSC Advances, 2014, 4, 54080-54083.	3.6	46
52	Development of Mono- and Di-AcO Substituted BODIPYs on the Boron Center. Organic Letters, 2012, 14, 248-251.	4.6	57
53	A selective fluorescent turn-on NIR probe for cysteine. Organic and Biomolecular Chemistry, 2012, 10, 1966.	2.8	94