Pascal Granger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6383184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic NO _{<i>x</i>} Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chemical Reviews, 2011, 111, 3155-3207.	47.7	643
2	Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122, 2981-3121.	47.7	139
3	Kinetics of the NO and CO Reaction over Platinum Catalysts. Journal of Catalysis, 1998, 173, 304-314.	6.2	88
4	Surface reconstruction of supported Pd on LaCoO3: Consequences on the catalytic properties in the decomposition of N2O. Journal of Catalysis, 2008, 253, 37-49.	6.2	88
5	Influence of preparation methods of LaCoO3 on the catalytic performances in the decomposition of N2O. Applied Catalysis B: Environmental, 2009, 91, 596-604.	20.2	82
6	Deactivation of supported copper based catalysts during polyol conversion in aqueous phase. Applied Catalysis A: General, 1995, 121, 231-244.	4.3	80
7	A simple and reproducible method for the synthesis of silica-supported rhodium nanoparticles and their investigation in the hydrogenation of aromatic compounds. New Journal of Chemistry, 2006, 30, 1214-1219.	2.8	77
8	Development of stable and efficient CeVO4 systems for the selective reduction of NOx by ammonia: Structure-activity relationship. Applied Catalysis B: Environmental, 2017, 218, 338-348.	20.2	76
9	An overview of kinetic and spectroscopic investigations on three-way catalysts: mechanistic aspects of the CO+NO and CO+N2O reactions. Journal of Molecular Catalysis A, 2005, 228, 241-253.	4.8	71
10	An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions. Topics in Catalysis, 2006, 39, 65-76.	2.8	71
11	Kinetics of the CO+NO Reaction over Rhodium and Platinum–Rhodium on Alumina. Journal of Catalysis, 1998, 175, 194-203.	6.2	69
12	Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis, 2010, 272, 92-100.	6.2	65
13	Operando resonance Raman spectroscopic characterisation of the oxidation state of palladium in Pd/γ-Al2O3catalysts during the combustion of methane. Physical Chemistry Chemical Physics, 2003, 5, 4394-4401.	2.8	64
14	Impact of barium and lanthanum incorporation to supported Pt and Rh on α-Al2O3 in the dry reforming of methane. Fuel, 2012, 97, 269-276.	6.4	63
15	A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2, 11349-11357.	10.3	63
16	Kinetics of the CO+NO Reaction over Bimetallic Platinum–Rhodium on Alumina: Effect of Ceria Incorporation into Noble Metals. Journal of Catalysis, 2002, 207, 202-212.	6.2	60
17	Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Applied Catalysis B: Environmental, 2012, 125, 149-157.	20.2	60
18	Investigation of the catalytic performances of supported noble metal based catalysts in the NO+H2 reaction under lean conditions. Catalysis Today, 2005, 107-108, 315-322.	4.4	59

#	Article	IF	CITATIONS
19	Surface reconstructions of LaCo1â^'xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: Impact on the catalytic properties. Applied Catalysis B: Environmental, 2013, 140-141, 151-163.	20.2	59
20	New insights into the role of Pd-Ce interface for methane activation on monolithic supported Pd catalysts: A step forward the development of novel PGM Three-Way Catalysts for natural gas fueled engines. Applied Catalysis B: Environmental, 2020, 264, 118475.	20.2	59
21	Structural changes of nano-Pt particles during thermal ageing: Support-induced effect and related impact on the catalytic performances. Journal of Catalysis, 2010, 270, 299-309.	6.2	58
22	Non stoichiometric La1-yFeO3 perovskite-based catalysts as alternative to commercial three-way-catalysts? – Impact of Cu and Rh doping. Applied Catalysis B: Environmental, 2018, 223, 167-176.	20.2	56
23	Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499, 217-226.	4.3	53
24	An in situ study of the NO+H2+O2 reaction on Pd/LaCoO3 based catalysts. Catalysis Today, 2007, 119, 100-105.	4.4	52
25	Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons. Catalysis Today, 2000, 59, 231-240.	4.4	50
26	Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Applied Catalysis B: Environmental, 2017, 205, 519-531.	20.2	50
27	Support modification to improve the sulphur tolerance of Ag/Al2O3 for SCR of NOx with propene under lean-burn conditions. Applied Catalysis B: Environmental, 2009, 90, 416-425.	20.2	47
28	Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Applied Catalysis B: Environmental, 2015, 174-175, 145-156.	20.2	47
29	Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. Applied Catalysis A: General, 2015, 504, 81-91.	4.3	46
30	Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249, 167-175.	4.4	45
31	Kinetics of the CO+N2O Reaction over Noble Metals. Journal of Catalysis, 1999, 187, 321-331.	6.2	43
32	A highly N-doped carbon phase "dressing―of macroscopic supports for catalytic applications. Chemical Communications, 2015, 51, 14393-14396.	4.1	43
33	Ceria–zirconia mixed oxides as thermal resistant catalysts for the decomposition of nitrous oxide at high temperature. Catalysis Today, 2011, 176, 453-457.	4.4	41
34	Kinetics of the NO+H2 reaction over supported noble metal based catalysts: Support effect on their adsorption properties. Applied Catalysis B: Environmental, 2007, 70, 100-110.	20.2	39
35	Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane. Fuel, 2016, 178, 139-147.	6.4	39
36	Enhancing catalytic activity of perovskite-based catalysts in three-way catalysis by surface composition optimisation. Catalysis Today, 2015, 258, 543-548.	4.4	38

#	Article	IF	CITATIONS
37	Support-Induced Effects of LaFeO3 Perovskite on the Catalytic Performances of Supported Pt Catalysts in DeNOx Applications. Journal of Physical Chemistry C, 2011, 115, 1911-1921.	3.1	37
38	An attempt at modelling the activity of Pt-Rh/Al2O3 three-way catalysts in the CO+NO reaction. Applied Catalysis A: General, 2001, 208, 369-379.	4.3	35
39	Spectroscopic IR, EPR, and operandoDRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co–BEAzeolite. Physical Chemistry Chemical Physics, 2012, 14, 2203-2215.	2.8	35
40	Supported-induced effect on the catalytic properties of Rh and Pt-Rh particles deposited on La2O3 and mixed α-Al2O3-La2O3 in the dry reforming of methane. Applied Catalysis A: General, 2014, 485, 172-180.	4.3	35
41	In situ Raman characterisation of surface modifications during NO transformation over automotive Pd-based exhaust catalysts. Journal of Molecular Structure, 2003, 651-653, 353-364.	3.6	34
42	Optimization of Multicomponent Cobalt Spinel Catalyst for N2O Abatement from Nitric Acid Plant Tail Gases: Laboratory and Pilot Plant Studies. Catalysis Letters, 2009, 130, 637-641.	2.6	34
43	Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S. Comptes Rendus Chimie, 2016, 19, 1303-1309.	0.5	33
44	XPS characterization of adsorbed reaction intermediates on automotive exhaust gas catalysts: NO and CO + NO interactions with Pd. Surface and Interface Analysis, 2002, 34, 105-111.	1.8	32
45	Kinetics of the CO+N2O reaction over noble metals II. Rh/Al2O3 and Pt–Rh/Al2O3. Journal of Catalysis, 2004, 223, 142-151.	6.2	32
46	Effect of yttrium on the performances of zirconia based catalysts for the decomposition of N2O at high temperature. Applied Catalysis B: Environmental, 2006, 62, 236-243.	20.2	32
47	Kinetic investigation of the NO reduction by H2 over noble metal based catalysts. Catalysis Today, 2007, 119, 94-99.	4.4	32
48	Catalytic decomposition of N2O on supported Pd catalysts: Support and thermal ageing effects on the catalytic performances. Catalysis Today, 2008, 137, 390-396.	4.4	32
49	IR Spectroscopy Analysis and Kinetic Modeling Study for NH ₃ Adsorption and Desorption on H- and Fe-BEA Catalysts. Journal of Physical Chemistry C, 2013, 117, 7154-7169.	3.1	32
50	Combined experimental and kinetic modeling approaches of ammonium nitrate thermal decomposition. Thermochimica Acta, 2014, 584, 58-66.	2.7	31
51	Challenges and breakthroughs in post-combustion catalysis: how to match future stringent regulations. Catalysis Science and Technology, 2017, 7, 5195-5211.	4.1	31
52	Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia. Applied Catalysis B: Environmental, 2018, 234, 318-328.	20.2	31
53	An in situ electrical conductivity study of LaCoFe perovskite-based catalysts in correlation with the total oxidation of methane. Applied Catalysis A: General, 2014, 485, 20-27.	4.3	29
54	Catalytic abatement of NO and N2O from nitric acid plants: A novel approach using noble metal-modified perovskites. Journal of Catalysis, 2015, 328, 236-247.	6.2	29

#	Article	IF	CITATIONS
55	Kinetics of the NO/H2 reaction on Pt/LaCoO3: A combined theoretical and experimental study. Journal of Catalysis, 2008, 258, 296-305.	6.2	27
56	NO reduction under diesel exhaust conditions over Au/Al2O3 prepared by deposition-precipitation method. Journal of Molecular Catalysis A, 2010, 322, 90-97.	4.8	27
57	Combined IR spectroscopy and kinetic modeling of NOx storage and NO oxidation on Fe-BEA SCR catalysts. Applied Catalysis B: Environmental, 2014, 148-149, 446-465.	20.2	27
58	Laboratory and pilot scale synthesis, characterization and reactivity of multicomponent cobalt spinel catalyst for low temperature removal of N2O from nitric acid plant tail gases. Catalysis Today, 2011, 176, 365-368.	4.4	26
59	Rational preparation of Ag and Au bimetallic catalysts for the hydrocarbon-SCR of NO x : Sequential deposition vs. coprecipitation method. Applied Catalysis B: Environmental, 2015, 162, 11-20.	20.2	25
60	Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96, 1060-1069.	10.3	24
61	Title is missing!. Topics in Catalysis, 2001, 16/17, 89-94.	2.8	22
62	Influence of the reaction temperature on the oxygen reduction reaction on nitrogen-doped carbon nanotube catalysts. Catalysis Today, 2015, 249, 236-243.	4.4	22
63	High Intrinsic Catalytic Activity of CeVO4-Based Catalysts for Ammonia-SCR: Influence of pH During Hydrothermal Synthesis. Topics in Catalysis, 2016, 59, 987-995.	2.8	22
64	Autothermal reforming of model purified biogas using an extruded honeycomb monolith: A new catalyst based on nickel incorporated illite clay promoted with MgO. Journal of Cleaner Production, 2018, 171, 377-389.	9.3	22
65	Polyol conversion into furanic derivatives on bimetallic catalysts; nature of the catalytic sites. Journal of Molecular Catalysis, 1994, 91, 119-128.	1.2	21
66	Influence of the Oxidation State of Rhodium in Three-Way Catalysts on Their Catalytic Performances: An in situ FTIR and Catalytic Study. Topics in Catalysis, 2004, 30/31, 347-352.	2.8	21
67	Kinetics of the NO/H2/O2 reactions on natural gas vehicle catalysts—Influence of Rh addition to Pd. Applied Catalysis B: Environmental, 2012, 111-112, 424-432.	20.2	21
68	Support-induced effect on the catalytic properties of Pd particles in water denitrification: Impact of surface and structural features of mesoporous ceria-zirconia support. Applied Catalysis B: Environmental, 2018, 224, 648-659.	20.2	21
69	Chloropentafluoroethane Hydrodechlorination over Tungsten Carbides: Influence of Surface Stoichiometry. Journal of Catalysis, 2002, 206, 358-362.	6.2	20
70	Structural regeneration of LaCoO3 perovskite-based catalysts during the NO + H2 + O2 reactions. Topics in Catalysis, 2007, 42-43, 171-176.	2.8	20
71	Evidence of A–B site cooperation in the EuFeO3 perovskite from 151Eu and 57Fe Mössbauer spectroscopy, EXAFS, and toluene catalytic oxidation. Journal of Catalysis, 2014, 316, 130-140.	6.2	20
72	Catalytic Activity and Thermal Stability of LaFe1â^'xCuxO3 and La2CuO4 Perovskite Solids in Three-Way-Catalysis. Topics in Catalysis, 2017, 60, 300-306.	2.8	19

#	Article	IF	CITATIONS
73	Bimetallic Au-Ag/Al2O3 as efficient catalysts for the Hydrocarbon Selective Reduction of NOxfrom lean burn engine exhaust. Catalysis Today, 2018, 306, 23-31.	4.4	19
74	Calcium and copper substitution in stoichiometric and La-deficient LaFeO3 compositions: A starting point in next generation of Three-Way-Catalysts for gasoline engines. Applied Catalysis B: Environmental, 2021, 282, 119621.	20.2	19
75	On the Effect of Deactivation on the Kinetics of CO Oxidation by NO over Pt–Rh Catalysts. Journal of Catalysis, 1998, 177, 147-151.	6.2	18
76	Infrared investigation of the transformation of NO over supported Pt- and Rh-based three-way catalysts. Surface and Interface Analysis, 2002, 34, 92-96.	1.8	18
77	In situ Raman spectroscopy evidence of an accessible phase potentially involved in the enhanced activity of La-deficient lanthanum orthoferrite in 3-way catalysis (TWC). Catalysis Today, 2017, 283, 151-157.	4.4	18
78	From useless humins by-product to Nb@graphite-like carbon catalysts highly efficient in HMF synthesis. Applied Catalysis A: General, 2021, 618, 118130.	4.3	18
79	Hydrodechlorination of CCl4 over group VI transition metal carbides. Applied Catalysis B: Environmental, 2002, 37, 161-173.	20.2	15
80	NOÂ+ÂH2 reaction on Pd/Al2O3 under lean conditions: kinetic study. Topics in Catalysis, 2007, 42-43, 135-141.	2.8	15
81	Multisite Modeling of NH ₃ Adsorption and Desorption over Fe-ZSM5. Journal of Physical Chemistry C, 2012, 116, 8437-8448.	3.1	15
82	Surface Raman spectroscopic study of NO transformation over Pd-based catalysts. Physical Chemistry Chemical Physics, 2003, 5, 4402.	2.8	14
83	Operando infrared spectroscopy of the reduction of NO by H2 over rhodium based catalysts. Catalysis Today, 2012, 191, 59-64.	4.4	14
84	Spectroscopic Investigation of Iron Substitution in EuCoO ₃ : Related Impact on the Catalytic Properties in the High-Temperature N ₂ O Decomposition. Journal of Physical Chemistry C, 2013, 117, 13989-13999.	3.1	14
85	Methane as Alternative in the Selective Reduction of NO over Supported Palladium Catalysts in Lean Conditions: Role of Redox Properties of Support Materials. Topics in Catalysis, 2004, 30/31, 59-64.	2.8	13
86	Reduction of N2O by CO over Ceria-Modified Three-Way Ptâ^'Rh Catalysts:  Kinetic Aspects. Journal of Physical Chemistry C, 2007, 111, 9905-9913.	3.1	13
87	XPS investigation of surface changes during thermal aging of Natural Gas Vehicle catalysts: Influence of Rh addition to Pd. Surface and Interface Analysis, 2010, 42, 530-535.	1.8	13
88	Comparative surface analysis and TAP measurements to probe the NO adsorptive properties of natural gas vehicle Pd–Rh/Al2O3 catalyst. Applied Catalysis B: Environmental, 2014, 160-161, 390-399.	20.2	13
89	Peculiar kinetic properties of Cu-doped Pd/CexZr1-xO2 in water denitrification: Impact of Pd-Cu interaction vs structural properties of CexZr1-xO2. Applied Catalysis B: Environmental, 2019, 253, 391-400.	20.2	13
90	An EPR investigation on the reactivity of oxygen from ceria modified bimetallic Pt-Rh/Al2O3 catalysts in the CO+NO reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 158, 241-247.	4.7	12

#	Article	IF	CITATIONS
91	Kinetics of the CO+O2 reaction over three-way Pt-Rh catalysts. Applied Catalysis A: General, 2001, 218, 257-267.	4.3	11
92	An Operando Spectroscopic Investigation of the NO/H2 Reaction on LaCoO3 and Pd-modified LaCoO3 — Influence of O2 on Catalyst Performances and Structure of Adsorbed Species. Journal of Physical Chemistry C, 2008, 112, 17183-17192.	3.1	11
93	Study of Ammonia Formation During the Purge of a Lean NO x Trap. Topics in Catalysis, 2009, 52, 1734-1739.	2.8	11
94	TAP investigation on methane conversion on supported Pd and Rh based catalysts – 1. Kinetics of methane adsorption. Applied Catalysis B: Environmental, 2012, 126, 239-248.	20.2	11
95	Enhanced selectivity of 3-D ordered macroporous Pt/Al2O3 catalysts in nitrites removal from water. Applied Catalysis A: General, 2018, 564, 26-32.	4.3	11
96	Second Youth of a Metal-Free Dehydrogenation Catalyst: When γ-Al ₂ O ₃ Meets Coke Under Oxygen- and Steam-Free Conditions. ACS Catalysis, 2019, 9, 9474-9484.	11.2	11
97	Pd characterization by XPS in perovskite catalysts for NO _{<i>x</i>} reduction: influence of thermal aging. Surface and Interface Analysis, 2010, 42, 545-550.	1.8	10
98	Structure, morphology and reducibility of ceria-doped zirconia. Journal of Molecular Structure, 2018, 1156, 369-376.	3.6	10
99	Investigation of Oxygen Interaction with a Ptâ ^{°°} Rh/Al2O3 Catalyst by a Differential Temperature-Programmed Desorption Method. Langmuir, 2003, 19, 9266-9270.	3.5	9
100	Mesoporous Pt–SiO2 and Pt–SiO2–Ta2O5 Catalysts Prepared Using Pt Colloids as Templates. ChemPhysChem, 2007, 8, 666-678.	2.1	9
101	Modeling NH3 Storage Over Fe- and Cu-Zeolite based, Urea-SCR Catalysts for Mobile Diesel Engines. Procedia, Social and Behavioral Sciences, 2012, 48, 1672-1682.	0.5	9
102	Tunable hierarchical porous silica materials using hydrothermal sedimentation-aggregation technique. Microporous and Mesoporous Materials, 2015, 208, 140-151.	4.4	9
103	Reaction Pathways Involved in CH4 Conversion on Pd/Al2O3 Catalysts: TAP as a Powerful Tool for the Elucidation of the Effective Role of the Metal/Support Interface. Frontiers in Chemistry, 2016, 4, 7.	3.6	9
104	Relationship between design strategies of commercial three-way monolithic catalysts and their performances in realistic conditions. Catalysis Today, 2022, 384-386, 122-132.	4.4	9
105	CexZr1â^'xO2 mixed oxide as OSC materials for supported Pd three-way catalysts: Flame-spray-pyrolysis vs. co-precipitation. Applied Catalysis A: General, 2020, 598, 117527.	4.3	9
106	Impact of Thermal Aging on the Kinetic Parameters of the NO/H ₂ Reaction on Pd/LaCoO ₃ . Langmuir, 2009, 25, 13673-13679.	3.5	8
107	Steady-state and unsteady-state kinetic approaches for studying reactions over three-way natural gas vehicle catalysts. Comptes Rendus Chimie, 2014, 17, 656-671.	0.5	8
108	Impact of Deactivation Phenomena on Kinetics of the C–N Coupling Reaction over Supported Cu2O Catalysts in Continuous-Flow Conditions. Journal of Physical Chemistry C, 2015, 119, 18422-18433.	3.1	8

#	Article	IF	CITATIONS
109	Reaction Pathways for Ammonia Formation on Lean NOx Trap/Reduction System: A Spectroscopic Infrared Investigation. Topics in Catalysis, 2013, 56, 151-156.	2.8	7
110	What News in the Surface Chemistry of Bulk and Supported Vanadia Based SCR atalysts: Improvements in their Resistance to Poisoning and Thermal Sintering. Chemical Record, 2019, 19, 1813-1828.	5.8	7
111	Stabilité en phase aqueuse de catalyseurs à base de cuivre. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 1557-1575.	0.2	7
112	Chapter 10 The formation of N2O during sNOX conversion: fundamental approach and practical developments. Studies in Surface Science and Catalysis, 2007, , 291-324.	1.5	6
113	WO _x â€CeO ₂ and WO _x â€Nb ₂ O ₅ catalysts deactivation during hexane isomerization. AICHE Journal, 2008, 54, 1303-1312.	3.6	6
114	Thermal Ageing Induced Effects on Pd/LaFeO3 for NOx Reduction by Hydrocarbons: Influence of the Preparation Method. Topics in Catalysis, 2009, 52, 1791-1798.	2.8	6
115	Catalytic Post-Treatment of Automotive Exhaust Gas from Natural Gas Combustion Engines: Potential Interest of Perovskite Materials. Topics in Catalysis, 2009, 52, 2007-2012.	2.8	6
116	Deposition–precipitation versus anionic-exchange Au/Al2O3 catalysts: A comparative investigation towards the selective reduction of NOx. Catalysis Communications, 2012, 26, 225-230.	3.3	6
117	The Activity of CeVO4-Based Catalysts for Ammonia-SCR: Impact of Surface Cerium Enrichment. Catalysis Letters, 2021, 151, 1003-1012.	2.6	6
118	New Insight in Ammonia Formation During the Purge of a Lean NOxTrap in Vehicles Running Conditions. , 0, , .		5
119	Advantages of syngas for the regeneration of NO trap system investigated with operando IR measurements. Catalysis Today, 2013, 205, 10-15.	4.4	5
120	Optimization of the Composition of Perovskite Type Materials for Further Elaboration of Four-Way Catalysts for Gasoline Engine. Topics in Catalysis, 2019, 62, 368-375.	2.8	5
121	ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts. Applied Clay Science, 2022, 217, 106390.	5.2	5
122	Promising Stability of Gold-Based Catalysts Prepared by Direct Anionic Exchange for DeNO x Applications in Lean Burn Conditions. Topics in Catalysis, 2013, 56, 157-164.	2.8	4
123	NO Adsorption and Reaction on Aged Pd–Rh Natural Gas Vehicle Catalysts: A Combined TAP and Steady-State Kinetic Approach. Topics in Catalysis, 2017, 60, 289-294.	2.8	4
124	Effects of alkaline earth metals on the surface, structure, and reactivity of α-alumina. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	4
125	Structural Induced Effect of Potassium on the Reactivity of Vanadate Species in V2O5–WO3/TiO2 SCR-Catalyst. Topics in Catalysis, 2019, 62, 56-62.	2.8	4
126	Thermal Aging of Perovskite Based Natural Gas Vehicle Catalysts: Dependency of the Mode of Pd Incorporation. Topics in Catalysis, 2020, 63, 1474-1484.	2.8	4

#	Article	IF	CITATIONS
127	Unexpected kinetic behavior of structured Pd/CeO2–ZrO2 toward undesired ammonia formation and consumption during nitrites reduction: Role of the reactivity of oxygen from ceria. Catalysis Today, 2022, 383, 330-338.	4.4	4
128	Cooperative effect of Pt single-atoms and nanoparticles supported on carbonaceous materials: Catalytic NO decomposition as a probe reaction. Applied Catalysis A: General, 2021, 617, 118103.	4.3	4
129	Impact of dual calcium and manganese substitution of La-deficient perovskites on structural and related catalytic properties: Future opportunities in next three-way-catalyst generation?. Applied Catalysis A: General, 2021, 619, 118137.	4.3	4
130	TAP Investigation of NO Adsorption on Pd/Al2O3: Effect of Thermal Aging. Topics in Catalysis, 2013, 56, 279-286.	2.8	3
131	CH4 Dissociation Mechanisms on Aged Three-Way Natural Gas Vehicle Pd/Al2O3 Catalyst. Topics in Catalysis, 2017, 60, 295-299.	2.8	3
132	Kinetic Modeling of the Metal/Support Interaction for CH4 Reaction over Oxidized Pd/Al2O3. Topics in Catalysis, 2019, 62, 331-335.	2.8	3
133	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	3.7	2
134	Structural and Textural Modifications of ZrO2 Induced By La2O3 Addition, Thermal Treatment and Reducing Process. Journal of Structural Chemistry, 2018, 59, 474-481.	1.0	2
135	Nano-engineered hierarchical porous silicas for enhanced catalytic efficiency in the liquid phase. Catalysis Science and Technology, 2018, 8, 4604-4608.	4.1	2
136	Combined theoretical and experimental kinetic approach for methane conversion on model supported Pd/La0.7MnO3 NGV catalyst: Sensitivity to inlet gas composition and consequence on the Pd-support interface. Applied Catalysis A: General, 2022, 641, 118687.	4.3	2
137	Linear Solvation Energy Relationship as a potential predictive tool to investigate catalytic properties: A study of perovskite materials in DeNOx and DeN2O applications. Catalysis Today, 2011, 176, 433-436.	4.4	1
138	Current Heterogeneous Catalytic Processes for Environmental Remediation of Air, Water, and Soil. , 2013, , 487-534.		1
139	Catalysis: From academic research to industrial applications. Comptes Rendus Chimie, 2016, 19, 1150-1151.	0.5	1
140	Impact of Thermal Aging on the SCR Performance of Tungsten Doped CeVO4 Mixed Oxides. Topics in Catalysis, 2019, 62, 49-55.	2.8	1
141	Pt particles sintering on Pt/SiO2 during water denitrification. Catalysis Communications, 2021, 148, 106168.	3.3	1
142	Nitrogen-Doped Carbon Composites as Metal-Free Catalysts. , 2016, , 273-311.		0
143	Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis. Catalysts, 2019, 9, 501.	3.5	О