

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6382837/publications.pdf Version: 2024-02-01

DENCL

#	Article	IF	CITATIONS
1	Surface acoustic wave microfluidics. Lab on A Chip, 2013, 13, 3626.	6.0	708
2	lsolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the United States of America, 2017, 114, 10584-10589.	7.1	633
3	Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4970-4975.	7.1	632
4	Acoustic tweezers for the life sciences. Nature Methods, 2018, 15, 1021-1028.	19.0	513
5	Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1522-1527.	7.1	448
6	Cell separation using tilted-angle standing surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12992-12997.	7.1	390
7	Controlling cell–cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 43-48.	7.1	330
8	Rare cell isolation and analysis in microfluidics. Lab on A Chip, 2014, 14, 626.	6.0	273
9	Probing circulating tumor cells in microfluidics. Lab on A Chip, 2013, 13, 602.	6.0	156
10	A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab on A Chip, 2014, 14, 4319-4323.	6.0	152
11	Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab on A Chip, 2016, 16, 2636-2643.	6.0	147
12	Enriching Nanoparticles <i>via</i> Acoustofluidics. ACS Nano, 2017, 11, 603-612.	14.6	142
13	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	12.8	134
14	A high-throughput acoustic cell sorter. Lab on A Chip, 2015, 15, 3870-3879.	6.0	126
15	Circulating Tumor Cell Phenotyping via Highâ€Throughput Acoustic Separation. Small, 2018, 14, e1801131.	10.0	115
16	<i>In Situ</i> Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems. ACS Nano, 2014, 8, 12175-12184.	14.6	106
17	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	14.9	106
18	Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab on A Chip, 2014, 14, 924-930.	6.0	88

Peng Li

#	Article	IF	CITATIONS
19	Standing surface acoustic wave (SSAW)-based cell washing. Lab on A Chip, 2015, 15, 331-338.	6.0	85
20	Applications of Acoustofluidics in Bioanalytical Chemistry. Analytical Chemistry, 2019, 91, 757-767.	6.5	84
21	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	10.0	83
22	Standing Surface Acoustic Wave Based Cell Coculture. Analytical Chemistry, 2014, 86, 9853-9859.	6.5	78
23	Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.	27.5	66
24	Probing cell–cell communication with microfluidic devices. Lab on A Chip, 2013, 13, 3152.	6.0	65
25	Probing Cell Deformability via Acoustically Actuated Bubbles. Small, 2016, 12, 902-910.	10.0	60
26	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	14.6	59
27	Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via "microfluidic drifting― Lab on A Chip, 2014, 14, 415-423.	6.0	52
28	An acoustofluidic sputum liquefier. Lab on A Chip, 2015, 15, 3125-3131.	6.0	51
29	Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. Small, 2015, 11, 2733-2737.	10.0	49
30	A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. Lab on A Chip, 2015, 15, 4166-4176.	6.0	49
31	A sharp-edge-based acoustofluidic chemical signal generator. Lab on A Chip, 2018, 18, 1411-1421.	6.0	48
32	Vibrating Sharpâ€edge Spray Ionization (VSSI) for voltageâ€free direct analysis of samples using mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e8232.	1.5	37
33	Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI) for Voltage-Free Liquid Chromatography-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 824-831.	2.8	33
34	A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing. Biomedical Microdevices, 2013, 15, 907-915.	2.8	32
35	Acoustic Cell Separation Based on Density and Mechanical Properties. Journal of Biomechanical Engineering, 2020, 142, .	1.3	31
36	Multiparameter Cell Affinity Chromatography: Separation and Analysis in a Single Microfluidic Channel. Analytical Chemistry, 2012, 84, 8140-8148.	6.5	29

Peng Li

#	Article	IF	CITATIONS
37	Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography. Analytical Chemistry, 2011, 83, 774-781.	6.5	28
38	Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography. Analytical Chemistry, 2011, 83, 7863-7869.	6.5	28
39	Acoustofluidic coating of particles and cells. Lab on A Chip, 2016, 16, 4366-4372.	6.0	27
40	Polydopamine-Modified Substrates for High-Sensitivity Laser Desorption Ionization Mass Spectrometry Imaging. ACS Applied Materials & Interfaces, 2019, 11, 46140-46148.	8.0	25
41	Facile Improvement of Negative Ion Mode Electrospray Ionization Using Capillary Vibrating Sharp-Edge Spray Ionization. Analytical Chemistry, 2020, 92, 2492-2502.	6.5	23
42	Composable Microfluidic Plates (cPlate): A Simple and Scalable Fluid Manipulation System for Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Analytical Chemistry, 2021, 93, 1489-1497.	6.5	23
43	Acoustofluidic enzyme-linked immunosorbent assay (ELISA) platform enabled by coupled acoustic streaming. Analytica Chimica Acta, 2019, 1079, 129-138.	5.4	22
44	A portable droplet generation system for ultra-wide dynamic range digital PCR based on a vibrating sharp-tip capillary. Biosensors and Bioelectronics, 2021, 191, 113458.	10.1	22
45	Evaluating nanomedicine with microfluidics. Nanotechnology, 2018, 29, 492001.	2.6	21
46	Immunological Analyses of Whole Blood via "Microfluidic Drifting―Based Flow Cytometric Chip. Annals of Biomedical Engineering, 2014, 42, 2303-2313.	2.5	14
47	One-step enzyme kinetics measurement in 3D printed microfluidics devices based on a high-performance single vibrating sharp-tip mixer. Analytica Chimica Acta, 2021, 1172, 338677.	5.4	14
48	Low Flow Voltage Free Interface for Capillary Electrophoresis and Mass Spectrometry Driven by Vibrating Sharp-Edge Spray Ionization. Analytical Chemistry, 2020, 92, 3006-3013.	6.5	12
49	Differential Mobility Cytometry. Analytical Chemistry, 2009, 81, 3334-3343.	6.5	11
50	Rapid Solution-Phase Hydrogen/Deuterium Exchange for Metabolite Compound Identification. Journal of the American Society for Mass Spectrometry, 2019, 30, 1102-1114.	2.8	11
51	Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance †Omics Analyses. Journal of the American Society for Mass Spectrometry, 2021, 32, 473-485.	2.8	11
52	Characterizing Multidevice Capillary Vibrating Sharp-Edge Spray Ionization for <i>In-Droplet</i> Hydrogen/Deuterium Exchange to Enhance Compound Identification. ACS Omega, 2021, 6, 18370-18382.	3.5	8
53	Physicochemical Property Correlations with Ionization Efficiency in Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI). Journal of the American Society for Mass Spectrometry, 2021, 32, 84-94.	2.8	7
54	A Small Footprint and Robust Interface for Solid Phase Microextraction and Mass Spectrometry Based on Vibrating Sharp-Edge Spray Ionization. Journal of the American Society for Mass Spectrometry, 2022, 33, 304-314.	2.8	7

Peng Li

#	Article	IF	CITATIONS
55	Direct analysis of surface chemicals using vibrating sharpâ€edge spray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8902.	1.5	5
56	Development of cVSSI-APCI for the Improvement of Ion Suppression and Matrix Effects in Complex Mixtures. Analytical Chemistry, 0, , .	6.5	4
57	Oxidation Promotes Distinct Huntingtin Aggregates in the Presence and Absence of Membranes. Biochemistry, 2022, 61, 1517-1530.	2.5	4
58	Integrated sample desalting, enrichment, and ionization on an omniphobic glass slide for direct mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 2021, 35, e9179.	1.5	3
59	Lab-on-a-chip Technologies Enabled by Surface Acoustic Waves. , 2014, , 354-398.		1
60	Chapter 5. Manipulation of Micro-/Nano-Objects via Surface Acoustic Waves. RSC Detection Science, 2014, , 136-152.	0.0	1
61	Rapid and flexible onâ€line desalting using Nafion coated melamine sponge for mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 0, , .	1.5	1