Friedrich Frischknecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6382813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proximityâ€dependent biotinylation approaches to study apicomplexan biology. Molecular Microbiology, 2022, 117, 553-568.	2.5	12
2	Transcellular blood–brain barrier disruption in malaria-induced reversible brain edema. Life Science Alliance, 2022, 5, e202201402.	2.8	4
3	Asynchronous nuclear cycles in multinucleated <i>Plasmodium falciparum</i> facilitate rapid proliferation. Science Advances, 2022, 8, eabj5362.	10.3	70
4	<i>Plasmodium</i> sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Reports, 2022, 23, e54719.	4.5	8
5	Collective migration reveals mechanical flexibility of malaria parasites. Nature Physics, 2022, 18, 586-594.	16.7	13
6	Phosphorylation of myosin A regulates gliding motility and is essential for <i>Plasmodium</i> transmission. EMBO Reports, 2022, 23, e54857.	4.5	9
7	Still enigmatic: Plasmodium oocysts 125 years after their discovery. Trends in Parasitology, 2022, , .	3.3	0
8	Gliding motility protein LIMP promotes optimal mosquito midgut traversal and infection by Plasmodium berghei. Molecular and Biochemical Parasitology, 2021, 241, 111347.	1.1	0
9	Malaria parasites differentially sense environmental elasticity during transmission. EMBO Molecular Medicine, 2021, 13, e13933.	6.9	13
10	Fluorescent tagging of <i>Plasmodium</i> circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Cellular Microbiology, 2021, 23, e13321.	2.1	4
11	Apicomplexans: A conoid ring unites them all. PLoS Biology, 2021, 19, e3001105.	5.6	4
12	Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Communications Biology, 2021, 4, 600.	4.4	5
13	Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. International Journal for Parasitology, 2021, 51, 989-997.	3.1	2
14	SPOT: a web-tool enabling swift profiling of transcriptomes. Bioinformatics, 2021, 38, 284-285.	4.1	0
15	Illuminating Plasmodium invasion by lattice-light-sheet microscopy. Trends in Parasitology, 2021, 37, 777-779.	3.3	1
16	Limited Plasmodium sporozoite gliding motility in the absence of TRAP family adhesins. Malaria Journal, 2021, 20, 430.	2.3	5
17	Plasmodium falciparum parasites exit the infected erythrocyte after haemolysis with saponin and streptolysin O. Parasitology Research, 2020, 119, 4297-4302.	1.6	3
18	The Riveting Cellular Structures of Apicomplexan Parasites. Trends in Parasitology, 2020, 36, 979-991.	3.3	45

#	Article	IF	CITATIONS
19	3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS ONE, 2020, 15, e0238134.	2.5	8
20	A function of profilin in force generation during malaria parasite motility independent of actin binding. Journal of Cell Science, 2020, 134, .	2.0	11
21	Linking murine resistance to secondary cystic echinococcosis with antibody responses targeting Echinococcus granulosus tegumental antigens. Immunobiology, 2020, 225, 151916.	1.9	7
22	Evolutionarily distant I domains can functionally replace the essential ligand-binding domain of Plasmodium TRAP. ELife, 2020, 9, .	6.0	19
23	An in vitro DNA Sensor-based Assay to Measure Receptor-specific Adhesion Forces of Eukaryotic Cells and Pathogens. Bio-protocol, 2020, 10, e3733.	0.4	0
24	Title is missing!. , 2020, 15, e0238134.		0
25	Title is missing!. , 2020, 15, e0238134.		0
26	Title is missing!. , 2020, 15, e0238134.		0
27	Title is missing!. , 2020, 15, e0238134.		0
28	Malaria transmission through the mosquito requires the function of the OMD protein. PLoS ONE, 2019, 14, e0222226.	2.5	2
29	Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in <i>Plasmodium berghei</i> but ITPase and NDH are dispensable. Expert Opinion on Therapeutic Targets, 2019, 23, 251-261.	3.4	6
30	Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against <i>Echinococcus granulosus</i> infection. Journal of Cellular Biochemistry, 2019, 120, 15320-15336.	2.6	11
31	Intravital imaging of host–parasite interactions in skin and adipose tissues. Cellular Microbiology, 2019, 21, e13023.	2.1	32
32	Intravital microscopy: Imaging host–parasite interactions in the brain. Cellular Microbiology, 2019, 21, e13024.	2.1	15
33	Toolbox for In Vivo Imaging of Host–Parasite Interactions at Multiple Scales. Trends in Parasitology, 2019, 35, 193-212.	3.3	12
34	Microtubule number and length determine cellular shape and function in <i>Plasmodium</i> . EMBO Journal, 2019, 38, e100984.	7.8	59
35	Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite <i>Plasmodium falciparum</i> . Cellular Microbiology, 2018, 20, e12843	2.1	8
36	Discovery of <i>Plasmodium</i> (M)TRAP–Aldolase Interaction Stabilizers Interfering with Sporozoite Motility and Invasion. ACS Infectious Diseases, 2018, 4, 620-634.	3.8	6

#	Article	IF	CITATIONS
37	Tailored environments to study motile cells and pathogens. Cellular Microbiology, 2018, 20, e12820.	2.1	13
38	Pathways of host cell exit by intracellular pathogens. Microbial Cell, 2018, 5, 525-544.	3.2	56
39	A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. Journal of Cell Science, 2018, 131, .	2.0	10
40	Screening for potential prophylactics targeting sporozoite motility through the skin. Malaria Journal, 2018, 17, 319.	2.3	15
41	Immunization efficacy of cryopreserved genetically attenuated Plasmodium berghei sporozoites. Parasitology Research, 2018, 117, 2487-2497.	1.6	6
42	<i>Plasmodium</i> gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 2018, 4, eaat3775.	10.3	72
43	Multi-channel boosting and multi-scale localization-based tracking of dense malarial sporozoites. , 2018, , .		0
44	Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Scientific Reports, 2018, 8, 11249.	3.3	19
45	Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biology, 2018, 16, e2005345.	5.6	41
46	Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites. Advanced Healthcare Materials, 2017, 6, 1601178.	7.6	17
47	<i>Plasmodium</i> Sporozoite Biology. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025478.	6.2	72
48	Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiology Reviews, 2017, 41, 828-853.	8.6	10
49	Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends in Parasitology, 2017, 33, 202-213.	3.3	30
50	Progress in imaging methods: insights gained into Plasmodium biology. Nature Reviews Microbiology, 2017, 15, 37-54.	28.6	41
51	A unique profilin-actin interface is important for malaria parasite motility. PLoS Pathogens, 2017, 13, e1006412.	4.7	50
52	Motility precedes egress of malaria parasites from oocysts. ELife, 2017, 6, .	6.0	52
53	Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. ELife, 2017, 6, .	6.0	27
54	Plasmodium Sporozoite Motility on Flat Substrates. Bio-protocol, 2017, 7, e2395.	0.4	2

#	Article	IF	CITATIONS
55	The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathogens, 2016, 12, e1005710.	4.7	54
56	A Putative Small Solute Transporter Is Responsible for the Secretion of G377 and TRAP-Containing Secretory Vesicles during Plasmodium Gamete Egress and Sporozoite Motility. PLoS Pathogens, 2016, 12, e1005734.	4.7	49
57	Proteomic Analysis of the Plasmodium berghei Gametocyte Egressome and Vesicular bioID of Osmiophilic Body Proteins Identifies Merozoite TRAP-like Protein (MTRAP) as an Essential Factor for Parasite Transmission. Molecular and Cellular Proteomics, 2016, 15, 2852-2862.	3.8	80
58	Experimental systems for studying Plasmodium/HIV coinfection. FEBS Letters, 2016, 590, 2000-2013.	2.8	6
59	Protective efficacy and safety of liver stage attenuated malaria parasites. Scientific Reports, 2016, 6, 26824.	3.3	20
60	A small mitochondrial protein present in myzozoans is essential for malaria transmission. Open Biology, 2016, 6, 160034.	3.6	17
61	Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nature Communications, 2016, 7, 13401.	12.8	45
62	Plasmodium. , 2016, , 241-284.		0
63	Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7183-7188.	7.1	28
64	Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration. ACS Nano, 2016, 10, 2091-2102.	14.6	47
65	The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission. Scientific Reports, 2015, 5, 16034.	3.3	46
66	Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites. Malaria Journal, 2015, 14, 280.	2.3	42
67	Active migration and passive transport of malaria parasites. Trends in Parasitology, 2015, 31, 357-362.	3.3	65
68	Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Genome Biology, 2015, 16, 249.	8.8	43
69	Nanoscopic Localization of Surface-Exposed Antigens of <i>Borrelia burgdorferi</i> . Microscopy and Microanalysis, 2015, 21, 680-688.	0.4	4
70	Chemical Attenuation of <i>Plasmodium</i> in the Liver Modulates Severe Malaria Disease Progression. Journal of Immunology, 2015, 194, 4860-4870.	0.8	22
71	In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage. Infection, Genetics and Evolution, 2015, 36, 72-81.	2.3	17
72	Can we stop malaria parasites in the skin?. Malaria Journal, 2014, 13, 07.	2.3	0

#	Article	IF	CITATIONS
73	A Cysteine Protease Inhibitor of Plasmodium berghei Is Essential for Exo-erythrocytic Development. PLoS Pathogens, 2014, 10, e1004336.	4.7	21
74	Structural Differences Explain Diverse Functions of Plasmodium Actins. PLoS Pathogens, 2014, 10, e1004091.	4.7	66
75	Calcium dynamics of <i>Plasmodium berghei</i> sporozoite motility. Cellular Microbiology, 2014, 16, 768-783.	2.1	55
76	Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection. Cell Host and Microbe, 2014, 16, 778-786.	11.0	104
77	Biology of the Malaria Parasite - editorial on the special issue for the 10th BioMalPar conference. Cellular Microbiology, 2014, 16, 599-601.	2.1	1
78	Geometrical model for malaria parasite migration in structured environments. Physical Review E, 2014, 90, 042720.	2.1	18
79	Haemoglobin S and C affect the motion of Maurer's clefts in <i>Plasmodium falciparum</i> -infected erythrocytes. Cellular Microbiology, 2013, 15, 1111-1126.	2.1	31
80	Cell Migration: Tunable Substrates Unveil Chemical Complementation of a Genetic Cell Migration Defect (Adv. Healthcare Mater. 8/2013). Advanced Healthcare Materials, 2013, 2, 1161-1161.	7.6	0
81	Electron tomography of <i>Plasmodium falciparum</i> merozoites reveals core cellular events that underpin erythrocyte invasion. Cellular Microbiology, 2013, 15, 1457-1472.	2.1	82
82	Tunable Substrates Unveil Chemical Complementation of a Genetic Cell Migration Defect. Advanced Healthcare Materials, 2013, 2, 1162-1169.	7.6	23
83	Invasion factors of apicomplexan parasites: essential or redundant?. Current Opinion in Microbiology, 2013, 16, 438-444.	5.1	46
84	Expression Profiling of Plasmodium berghei HSP70 Genes for Generation of Bright Red Fluorescent Parasites. PLoS ONE, 2013, 8, e72771.	2.5	22
85	Actin-mediated plasma membrane plasticity of the intracellular parasite <i>Theileria annulata</i> . Cellular Microbiology, 2012, 14, 1867-1879.	2.1	17
86	Structural basis for chirality and directional motility of <i>Plasmodium</i> sporozoites. Cellular Microbiology, 2012, 14, 1757-1768.	2.1	58
87	Host actin remodeling and protection from malaria by hemoglobinopathies. Trends in Parasitology, 2012, 28, 479-485.	3.3	41
88	Understanding Parasite Transmission Through Imaging Approaches. Methods in Enzymology, 2012, 506, 19-33.	1.0	3
89	Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes. PLoS ONE, 2012, 7, e29408.	2.5	22
90	Critical Role for Heat Shock Protein 20 (HSP20) in Migration of Malarial Sporozoites. Journal of Biological Chemistry, 2012, 287, 2410-2422.	3.4	62

Friedrich Frischknecht

#	Article	IF	CITATIONS
91	Direct Manipulation of Malaria Parasites with Optical Tweezers Reveals Distinct Functions of Plasmodium Surface Proteins. ACS Nano, 2012, 6, 4648-4662.	14.6	39
92	The Alveolin IMC1h Is Required for Normal Ookinete and Sporozoite Motility Behaviour and Host Colonisation in Plasmodium berghei. PLoS ONE, 2012, 7, e41409.	2.5	71
93	Induction of Malaria Parasite Migration by Synthetically Tunable Microenvironments. Nano Letters, 2011, 11, 4468-4474.	9.1	30
94	Hemoglobins S and C Interfere with Actin Remodeling in <i>Plasmodium falciparum</i> –Infected Erythrocytes. Science, 2011, 334, 1283-1286.	12.6	203
95	Evidence of direct cell-cell fusion in Borrelia by cryogenic electron tomography. Cellular Microbiology, 2011, 13, 731-741.	2.1	18
96	Environmental Constraints Guide Migration of Malaria Parasites during Transmission. PLoS Pathogens, 2011, 7, e1002080.	4.7	57
97	Geometric constrains for detecting short actin filaments by cryogenic electron tomography. PMC Biophysics, 2010, 3, 6.	2.3	37
98	Rapid quantification of the effects of blotting for correlation of light and cryoâ€light microscopy images. Journal of Microscopy, 2010, 238, 21-26.	1.8	23
99	Positioning of large organelles by a membrane- associated cytoskeleton in <i>Plasmodium</i> sporozoites. Cellular Microbiology, 2010, 12, 362-371.	2.1	74
100	Synergistic and Additive Effects of Epigallocatechin Gallate and Digitonin on Plasmodium Sporozoite Survival and Motility. PLoS ONE, 2010, 5, e8682.	2.5	44
101	Multistep adhesion of <i>Plasmodium</i> sporozoites. FASEB Journal, 2010, 24, 2222-2234.	0.5	73
102	Key factors regulating Plasmodium berghei sporozoite survival and transformation revealed by an automated visual assay. FASEB Journal, 2010, 24, 5003-5012.	0.5	20
103	Imaging Parasites at Different Scales. Cell Host and Microbe, 2010, 8, 16-19.	11.0	4
104	Key factors regulating <i>Plasmodium berghei</i> sporozoite survival and transformation revealed by an automated visual assay. FASEB Journal, 2010, 24, 5003-5012.	0.5	11
105	Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathogens, 2009, 5, e1000322.	4.7	117
106	Are neutrophils important host cells for Leishmania parasites?. Trends in Parasitology, 2009, 25, 505-510.	3.3	99
107	A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii. Current Biology, 2009, 19, 277-286.	3.9	124
108	Comparative cryoâ€electron tomography of pathogenic Lyme disease spirochetes. Molecular Microbiology, 2009, 71, 1415-1434.	2.5	73

#	Article	IF	CITATIONS
109	Automated classification of <i>Plasmodium</i> sporozoite movement patterns reveals a shift towards productive motility during salivary gland infection. Biotechnology Journal, 2009, 4, 903-913.	3.5	63
110	Retrospective: Birth of the Cool – Imaging and microbiology from Ibn alâ€Haytham to Jean Comandon. Biotechnology Journal, 2009, 4, 787-790.	3.5	6
111	Editorial: Imaging hostâ€pathogen interactions. Biotechnology Journal, 2009, 4, 775-775.	3.5	1
112	Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host and Microbe, 2009, 6, 551-562.	11.0	163
113	Cryo-Electron Tomography of Malaria Parasites. Microscopy and Microanalysis, 2009, 15, 864-865.	0.4	0
114	Imaging Motile Pathogens by Light microscopy and Cryo-electron Tomography. Microscopy and Microanalysis, 2009, 15, 80-81.	0.4	0
115	The <i>Plasmodium falciparum</i> Maurer's clefts in 3D. Molecular Microbiology, 2008, 67, 687-691.	2.5	7
116	Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends in Parasitology, 2008, 24, 557-563.	3.3	160
117	Microneme protein 8 – a new essential invasion factor in <i>Toxoplasma gondii</i> . Journal of Cell Science, 2008, 121, 947-956.	2.0	117
118	Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. Journal of Experimental Medicine, 2007, 204, 1281-1287.	8.5	86
119	Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nature Methods, 2007, 4, 1003-1005.	19.0	185
120	The skin as interface in the transmission of arthropod-borne pathogens. Cellular Microbiology, 2007, 9, 1630-1640.	2.1	51
121	Using green fluorescent malaria parasites to screen for permissive vector mosquitoes. Malaria Journal, 2006, 5, 23.	2.3	24
122	Imaging today's infectious animalcules. Current Opinion in Microbiology, 2006, 9, 297-306.	5.1	27
123	Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cellular Microbiology, 2006, 8, 233-241.	2.1	90
124	Surfing Through a Sea of Sharks: Report on the British Society for Cell Biology Meeting on â€~Signaling and Cytoskeletal Dynamics During Infection', October 2-5, 2005, Edinburgh, Scotland. Traffic, 2006, 7, 479-487.	2.7	4
125	Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature Medicine, 2006, 12, 220-224.	30.7	481
126	Meeting report: Public health in reverse?. Biotechnology Journal, 2006, 1, 133-134.	3.5	0

#	Article	IF	CITATIONS
127	Vaccinia Virus-Induced Cell Motility Requires F11L-Mediated Inhibition of RhoA Signaling. Science, 2006, 311, 377-381.	12.6	107
128	Luminal particles within cellular microtubules. Journal of Cell Biology, 2006, 174, 759-765.	5.2	111
129	In vivo imaging of malaria parasites — recent advances and future directions. Current Opinion in Microbiology, 2005, 8, 407-414.	5.1	49
130	Focusing light on infection in four dimensions. Cellular Microbiology, 2004, 6, 333-343.	2.1	27
131	Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cellular Microbiology, 2004, 6, 687-694.	2.1	171
132	Local solutions for global problems. EMBO Reports, 2003, 4, 553-555.	4.5	1
133	Grb2 and Nck Act Cooperatively to Promote Actin-Based Motility of Vaccinia Virus. Current Biology, 2002, 12, 740-745.	3.9	135
134	Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biology, 2001, 3, 992-1000.	10.3	270
135	Surfing pathogens and the lessons learned for actin polymerization. Trends in Cell Biology, 2001, 11, 30-38.	7.9	192
136	A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biology, 2000, 2, 441-448.	10.3	321
137	Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature, 1999, 401, 926-929.	27.8	394
138	Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Current Biology, 1999, 9, 89-S2.	3.9	105
139	Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Nature Structural Biology, 1999, 6, 760-764.	9.7	61
140	Interactions between Vaccinia Virus IEV Membrane Proteins and Their Roles in IEV Assembly and Actin Tail Formation. Journal of Virology, 1999, 73, 2863-2875.	3.4	118
141	Voltage- and ligand-gated ion channels in floor plate neuroepithelia of the rat. Neuroscience, 1998, 85, 1135-1149.	2.3	18