Lloyd Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6382594/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Role of the Transcription Factor CREB in Immune Function. Journal of Immunology, 2010, 185, 6413-6419.	0.8	638
2	IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. Journal of Clinical Investigation, 2010, 120, 1762-1773.	8.2	554
3	Immunity against Staphylococcus aureus cutaneous infections. Nature Reviews Immunology, 2011, 11, 505-518.	22.7	339
4	MyD88 Mediates Neutrophil Recruitment Initiated by IL-1R but Not TLR2 Activation in Immunity against Staphylococcus aureus. Immunity, 2006, 24, 79-91.	14.3	331
5	A Critical Role for Hemolysins and Bacterial Lipoproteins in <i>Staphylococcus aureus</i> -Induced Activation of the Nlrp3 Inflammasome. Journal of Immunology, 2009, 183, 3942-3948.	0.8	301
6	Inflammasome-Mediated Production of IL-1β Is Required for Neutrophil Recruitment against <i>Staphylococcus aureus</i> In Vivo. Journal of Immunology, 2007, 179, 6933-6942.	0.8	294
7	Dynamics of Neutrophil Infiltration during Cutaneous Wound Healing and Infection Using Fluorescence Imaging. Journal of Investigative Dermatology, 2008, 128, 1812-1820.	0.7	211
8	Toll-Like Receptors in Skin. Advances in Dermatology, 2008, 24, 71-87.	2.0	207
9	Neutrophil-derived IL-1Î ² Is Sufficient for Abscess Formation in Immunity against Staphylococcus aureus in Mice. PLoS Pathogens, 2012, 8, e1003047.	4.7	194
10	IL-23 and IL-17A, but Not IL-12 and IL-22, Are Required for Optimal Skin Host Defense against <i>Candida albicans</i> . Journal of Immunology, 2010, 185, 5453-5462.	0.8	193
11	A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings. PLoS ONE, 2010, 5, e12580.	2.5	181
12	Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. Cell Host and Microbe, 2017, 22, 653-666.e5.	11.0	170
13	Leukotriene B4-Driven Neutrophil Recruitment to the Skin Is Essential for Allergic Skin Inflammation. Immunity, 2012, 37, 747-758.	14.3	169
14	dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. Cell Stem Cell, 2015, 17, 139-151.	11.1	147
15	TGF-α Regulates TLR Expression and Function on Epidermal Keratinocytes. Journal of Immunology, 2005, 174, 6137-6143.	0.8	146
16	Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications, 2020, 11, 105.	12.8	146
17	Development of a vaccine against <i>Staphylococcus aureus</i> invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiology Reviews, 2020, 44, 123-153.	8.6	138
18	Toll-like receptors in the skin. Seminars in Immunopathology, 2007, 29, 15-26.	6.1	131

#	Article	IF	CITATIONS
19	The antimicrobial and osteoinductive properties of silver nanoparticle/poly (dl-lactic-co-glycolic) Tj ETQq1 1 0.784	314 rgBT 11.4gBT	/Overlock I(129
20	Broadâ€Spectrum Antimicrobial and Biofilmâ€Disrupting Hydrogels: Stereocomplexâ€Driven Supramolecular Assemblies. Angewandte Chemie - International Edition, 2013, 52, 674-678.	13.8	128
21	Mouse model of chronic postâ€arthroplasty infection: Noninvasive in vivo bioluminescence imaging to monitor bacterial burden for longâ€ŧerm study. Journal of Orthopaedic Research, 2012, 30, 335-340.	2.3	125
22	Innate and adaptive immune responses against Staphylococcus aureus skin infections. Seminars in Immunopathology, 2012, 34, 261-280.	6.1	124
23	Host–pathogen interactions between the skin and Staphylococcus aureus. Current Opinion in Microbiology, 2012, 15, 28-35.	5.1	122
24	Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. Journal of Clinical Investigation, 2012, 122, 337-347.	8.2	120
25	Immunological Mechanisms Underlying the Genetic Predisposition to Severe Staphylococcus aureus Infection in the Mouse Model. American Journal of Pathology, 2008, 173, 1657-1668.	3.8	115
26	Neutrophil extracellular traps, B cells, and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. Science Translational Medicine, 2019, 11, .	12.4	111
27	Human NACHT, LRR, and PYD domain–containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. Journal of Allergy and Clinical Immunology, 2017, 140, 1054-1067.e10.	2.9	105
28	Neutrophil survival and c-kit+-progenitor proliferation in Staphylococcus aureus–infected skin wounds promote resolution. Blood, 2011, 117, 3343-3352.	1.4	103
29	Clonally expanded Î ³ Î′ T cells protect against Staphylococcus aureus skin reinfection. Journal of Clinical Investigation, 2018, 128, 1026-1042.	8.2	98
30	Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6919-E6928.	7.1	85
31	Human Keratinocyte Toll-like Receptors Promote Distinct Immune Responses. Journal of Investigative Dermatology, 2007, 127, 262-263.	0.7	81
32	Vancomycin-Rifampin Combination Therapy Has Enhanced Efficacy against an Experimental Staphylococcus aureus Prosthetic Joint Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 5080-5086.	3.2	78
33	Bacteria induce skin regeneration via IL-1β signaling. Cell Host and Microbe, 2021, 29, 777-791.e6.	11.0	78
34	The fungal ligand chitin directly binds <scp>TLR</scp> 2 and triggers inflammation dependent on oligomer size. EMBO Reports, 2018, 19, .	4.5	75
35	Clonal Vγ6 ⁺ VÎ′4 ⁺ T cells promote IL-17–mediated immunity against <i>Staphylococcus aureus</i> skin infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10917-10926.	7.1	75
36	<i>In Vivo</i> Bioluminescence Imaging To Evaluate Systemic and Topical Antibiotics against Community-Acquired Methicillin-Resistant Staphylococcus aureus-Infected Skin Wounds in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 855-863.	3.2	73

#	Article	IF	CITATIONS
37	Monitoring Bacterial Burden, Inflammation and Bone Damage Longitudinally Using Optical and μCT Imaging in an Orthopaedic Implant Infection in Mice. PLoS ONE, 2012, 7, e47397.	2.5	71
38	Mouse model of hematogenous implant-related <i>Staphylococcus aureus</i> biofilm infection reveals therapeutic targets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5094-E5102.	7.1	70
39	Protective role of ILâ€1β against postâ€arthroplasty <i>Staphylococcus aureus</i> infection. Journal of Orthopaedic Research, 2011, 29, 1621-1626.	2.3	65
40	Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nature Communications, 2019, 10, 2811.	12.8	64
41	Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections. Journal of Investigative Dermatology, 2011, 131, 907-915.	0.7	63
42	Protective immunity in recurrent <i>Staphylococcus aureus</i> infection reflects localized immune signatures and macrophage-conferred memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11111-E11119.	7.1	63
43	Fibroblast growth factor 2 dimer with superagonist inÂvitro activity improves granulation tissue formation during wound healing. Biomaterials, 2016, 81, 157-168.	11.4	59
44	Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2015, 83, 4427-4437.	2.2	58
45	Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. Journal of Allergy and Clinical Immunology, 2019, 143, 1426-1443.e6.	2.9	56
46	Staphylococcus aureus recognition by hematopoietic stem and progenitor cells via TLR2/MyD88/PGE2 stimulates granulopoiesis in wounds. Blood, 2013, 122, 1770-1778.	1.4	53
47	Interleukin-17A (IL-17A) and IL-17F Are Critical for Antimicrobial Peptide Production and Clearance of Staphylococcus aureus Nasal Colonization. Infection and Immunity, 2016, 84, 3575-3583.	2.2	52
48	Neutralizing Alpha-Toxin Accelerates Healing of Staphylococcus aureus-Infected Wounds in Nondiabetic and Diabetic Mice. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	51
49	IL-22 derived from Î ³ δT cells restricts Staphylococcus aureus infection of mechanically injured skin. Journal of Allergy and Clinical Immunology, 2016, 138, 1098-1107.e3.	2.9	48
50	In Vivo Efficacy of a "Smart―Antimicrobial Implant Coating. Journal of Bone and Joint Surgery - Series A, 2016, 98, 1183-1189.	3.0	42
51	Daptomycin and Tigecycline Have Broader Effective Dose Ranges than Vancomycin as Prophylaxis against a Staphylococcus aureus Surgical Implant Infection in Mice. Antimicrobial Agents and Chemotherapy, 2012, 56, 2590-2597.	3.2	41
52	Oral-Only Linezolid-Rifampin Is Highly Effective Compared with Other Antibiotics for Periprosthetic Joint Infection. Journal of Bone and Joint Surgery - Series A, 2017, 99, 656-665.	3.0	41
53	Downstream Signals for MyD88-Mediated Phagocytosis of <i>Borrelia burgdorferi</i> Can Be Initiated by TRIF and Are Dependent on PI3K. Journal of Immunology, 2009, 183, 491-498.	0.8	40
54	Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease. Journal of Clinical Investigation, 2021, 131, .	8.2	39

#	Article	IF	CITATIONS
55	Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2017, 85, .	2.2	38
56	Association between prurigo nodularis and malignancy in middle-aged adults. Journal of the American Academy of Dermatology, 2019, 81, 1198-1201.	1.2	38
57	S. aureus blocks efferocytosis of neutrophils by macrophages through the activity of its virulence factor alpha toxin. Scientific Reports, 2016, 6, 35466.	3.3	33
58	Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. Current Dermatology Reports, 2018, 7, 338-349.	2.1	32
59	Disseminated sporotrichosis following iatrogenic immunosuppression for suspected pyoderma gangrenosum. Lancet Infectious Diseases, The, 2019, 19, e385-e391.	9.1	32
60	Which Way Do We Go? Complex Interactions in Atopic Dermatitis Pathogenesis. Journal of Investigative Dermatology, 2021, 141, 274-284.	0.7	32
61	Novel in vivo mouse model of implant related spine infection. Journal of Orthopaedic Research, 2017, 35, 193-199.	2.3	30
62	Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17–Producing γδT Cells. Journal of Immunology, 2018, 201, 1651-1661.	0.8	30
63	Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone. Bone Research, 2018, 6, 13.	11.4	29
64	Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis. Frontiers in Immunology, 2019, 10, 1867.	4.8	29
65	Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice. PLoS Pathogens, 2018, 14, e1007244.	4.7	28
66	Suppression of Cytokine-Induced Neutrophil Accumulation in Rat Mesenteric Venules in vivo by General Anesthesia. International Journal of Microcirculation, Clinical and Experimental, 1996, 16, 147-154.	0.5	27
67	Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nature Communications, 2021, 12, 3696.	12.8	27
68	Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence, 2018, 9, 262-272.	4.4	27
69	Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremiaÂand mixed infections. Scientific Reports, 2019, 9, 16663.	3.3	25
70	Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets. JCI Insight, 2018, 3, .	5.0	25
71	Cutting Edge: Nitrogen Bisphosphonate-Induced Inflammation Is Dependent upon Mast Cells and IL-1. Journal of Immunology, 2012, 188, 2977-2980.	0.8	24
72	A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge. Cell Research, 2011, 21, 1068-1079.	12.0	20

#	Article	IF	CITATIONS
73	Combination Prophylactic Therapy with Rifampin Increases Efficacy against an Experimental Staphylococcus epidermidis Subcutaneous Implant-Related Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 2377-2386.	3.2	20
74	<scp>NMR</scp> structureâ€based optimization of <i>Staphylococcus aureus</i> sortase A pyridazinone inhibitors. Chemical Biology and Drug Design, 2017, 90, 327-344.	3.2	20
75	In Vivo Bioluminescence Imaging in a Rabbit Model of Orthopaedic Implant-Associated Infection to Monitor Efficacy of an Antibiotic-Releasing Coating. Journal of Bone and Joint Surgery - Series A, 2019, 101, e12.	3.0	20
76	Induction of Secreted Human Immunodeficiency Virus Type 1 (HIV-1) Resistance Factors in CD4-Positive T Lymphocytes by Attenuated HIV-1 Infection. Virology, 2002, 294, 1-12.	2.4	19
77	Preclinical Evaluation of Photoacoustic Imaging as a Novel Noninvasive Approach to Detect an Orthopaedic Implant Infection. Journal of the American Academy of Orthopaedic Surgeons, The, 2017, 25, S7-S12.	2.5	19
78	Pan-caspase inhibition as a potential host-directed immunotherapy against MRSA and other bacterial skin infections. Science Translational Medicine, 2021, 13, .	12.4	19
79	Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight, 2019, 4, .	5.0	19
80	Pathogenic and therapeutic role for NRF2 signaling in ultraviolet light–induced skin pigmentation. JCI Insight, 2020, 5, .	5.0	19
81	IL-6R/Signal Transducer and Activator of Transcription 3 Signaling in Keratinocytes rather than in T Cells Induces Psoriasis-Like Dermatitis in Mice. Journal of Investigative Dermatology, 2022, 142, 1126-1135.e4.	0.7	19
82	Theranostic biocomposite scaffold membrane. Biomaterials, 2019, 212, 17-27.	11.4	18
83	Comparative intravital imaging of human and rodent malaria sporozoites reveals the skin is not a speciesâ€specific barrier. EMBO Molecular Medicine, 2021, 13, e11796.	6.9	18
84	Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. Journal of Investigative Dermatology, 2020, 140, 1488-1497.e1.	0.7	17
85	Collaborative Interferon-γ and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. American Journal of Pathology, 2016, 186, 2337-2352.	3.8	16
86	Dynamic PET-facilitated modeling and high-dose rifampin regimens for <i>Staphylococcus aureus</i> orthopedic implant–associated infections. Science Translational Medicine, 2021, 13, eabl6851.	12.4	16
87	Basophil-derived IL-4 promotes cutaneous Staphylococcus aureus infection. JCI Insight, 2021, 6, .	5.0	15
88	Collagen deposition in chronic hidradenitis suppurativa: potential role for CD163 ⁺ macrophages. British Journal of Dermatology, 2018, 179, 792-794.	1.5	14
89	Combined In vivo Optical and µCT Imaging to Monitor Infection, Inflammation, and Bone Anatomy in an Orthopaedic Implant Infection in Mice. Journal of Visualized Experiments, 2014, , e51612.	0.3	13
90	Lucky Number Seven: RNase 7 Can Prevent Staphylococcus aureus Skin Colonization. Journal of Investigative Dermatology, 2010, 130, 2703-2706.	0.7	12

#	Article	IF	CITATIONS
91	Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. Journal of Orthopaedic Research, 2019, 37, 2269-2277.	2.3	12
92	Interleukinâ€1β and tumor necrosis factor are essential in controlling an experimental orthopedic implantâ€associated infection. Journal of Orthopaedic Research, 2020, 38, 1800-1809.	2.3	12
93	Efficacy of a Multimechanistic Monoclonal Antibody Combination against Staphylococcus aureus Surgical Site Infections in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
94	Comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Scientific Reports, 2019, 9, 6774.	3.3	11
95	Transmission of Antimicrobial-Resistant <i>Staphylococcus aureus</i> Clonal Complex 9 between Pigs and Humans, United States. Emerging Infectious Diseases, 2021, 27, 740-748.	4.3	11
96	11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight, 2022, 7, .	5.0	11
97	Specimen Collection for Translational Studies in Hidradenitis Suppurativa. Scientific Reports, 2019, 9, 12207.	3.3	10
98	Rabbit model of <i>Staphylococcus aureus</i> implant-associated spinal infection. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	10
99	α-Toxin Regulates Local Granulocyte Expansion from Hematopoietic Stem and Progenitor Cells in <i>Staphylococcus aureus–</i> Infected Wounds. Journal of Immunology, 2017, 199, 1772-1782.	0.8	9
100	A Mouse Model to Assess Innate Immune Response to Staphylococcus aureus Infection. Journal of Visualized Experiments, 2019, , .	0.3	9
101	Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of Staphylococcal biofilm implant infections. Scientific Reports, 2021, 11, 1622.	3.3	9
102	Increased Expression of CD23 (Fcε Receptor II) by Peripheral Blood Monocytes of AIDS Patients. AIDS Research and Human Retroviruses, 2001, 17, 443-452.	1.1	8
103	Pushing the Envelope in Psoriasis: Late Cornified Envelope Proteins Possess Antimicrobial Activity. Journal of Investigative Dermatology, 2017, 137, 2257-2259.	0.7	8
104	CCR6+ γδT Cells Home to Skin Wounds and Restore Normal Wound Healing in CCR6-Deficient Mice. Journal of Investigative Dermatology, 2019, 139, 2061-2064.e2.	0.7	8
105	Neutrophil extracellular traps impair regeneration. Journal of Cellular and Molecular Medicine, 2021, 25, 10008-10019.	3.6	8
106	Adipocytes Armed against <i>Staphylococcus aureus</i> . New England Journal of Medicine, 2015, 372, 1368-1370.	27.0	6
107	Lessons learned from the development of a hidradenitis suppurativa xenograft mouse model. Clinical and Experimental Dermatology, 2020, 45, 202-206.	1.3	6
108	Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging. Methods in Molecular Biology, 2020, 2069, 197-228.	0.9	6

#	Article	IF	CITATIONS
109	Neutrophils in hot pursuit of MRSA in the lymph nodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2272-2274.	7.1	5
110	Association of particulate matter air pollution and itch: A digital epidemiology approach. Journal of the American Academy of Dermatology, 2019, 81, 1409-1410.	1.2	5
111	CCR2 contributes to host defense against <i>Staphylococcus aureus</i> orthopedic implantâ€associated infections in mice. Journal of Orthopaedic Research, 2022, 40, 409-419.	2.3	5
112	Predilection for developing a hematogenous orthopaedic implant-associated infection in older versus younger mice. Journal of Orthopaedic Surgery and Research, 2021, 16, 556.	2.3	2
113	Psoriasiform drug eruption secondary to sorafenib: case series and review of the literature. Cutis, 2019, 104, E11-E15.	0.3	2
114	Optical Imaging. , 2017, , 43-76.		0