
Ralph R Isberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381734/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nature Microbiology, 2022, 7, 796-809.	5.9	17
2	Bacterial Pathogen Subversion of Phagocytic Killing. , 2022, , .		0
3	Members of the <i>Legionella pneumophila</i> Sde family target tyrosine residues for phosphoribosyl-linked ubiquitination. RSC Chemical Biology, 2021, 2, 1509-1519.	2.0	19
4	Essential Gene Analysis in Acinetobacter baumannii by High-Density Transposon Mutagenesis and CRISPR Interference. Journal of Bacteriology, 2021, 203, e0056520.	1.0	25
5	Heightened Virulence of <i>Yersinia</i> Is Associated with Decreased Function of the YopJ Protein. Infection and Immunity, 2021, 89, e0043021.	1.0	5
6	SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Reports, 2021, 37, 109894.	2.9	18
7	Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes, 2021, 13, 1988390.	4.3	15
8	Entropy of a bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity. Nature Communications, 2020, 11, 4365.	5.8	30
9	Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nature Communications, 2020, 11, 4522.	5.8	62
10	The vacuole guard hypothesis: how intravacuolar pathogens fight to maintain the integrity of their beloved home. Current Opinion in Microbiology, 2020, 54, 51-58.	2.3	18
11	Components of the endocytic and recycling trafficking pathways interfere with the integrity of the <i>Legionella</i> â€containing vacuole. Cellular Microbiology, 2020, 22, e13151.	1.1	19
12	Topologically correct synthetic reconstruction of pathogen social behavior found during Yersinia growth in deep tissue sites. ELife, 2020, 9, .	2.8	3
13	Iron-Sulfur Cluster Repair Contributes to Yersinia pseudotuberculosis Survival within Deep Tissues. Infection and Immunity, 2019, 87, .	1.0	20
14	The iron-regulated vacuolar <i>Legionella pneumophila</i> MavN protein is a transition-metal transporter. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17775-17785.	3.3	21
15	<i>Acinetobacter baumannii</i> : Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annual Review of Microbiology, 2019, 73, 481-506.	2.9	95
16	The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. MBio, 2019, 10, .	1.8	32
17	New Age Strategies To Reconstruct Mucosal Tissue Colonization and Growth in Cell Culture Systems. Microbiology Spectrum, 2019, 7, .	1.2	8
18	<i>Legionella pneumophila</i> translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3221-3228.	3.3	26

Ralph R Isberg

#	Article	IF	CITATIONS
19	Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes. Nature Communications, 2019, 10, 5729.	5.8	54
20	Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model. BMC Genomics, 2019, 20, 961.	1.2	17
21	One for All, but Not All for One: Social Behavior during Bacterial Diseases. Trends in Microbiology, 2019, 27, 64-74.	3.5	19
22	An Experimental Pipeline for Initial Characterization of Bacterial Type III Secretion System Inhibitor Mode of Action Using Enteropathogenic Yersinia. Frontiers in Cellular and Infection Microbiology, 2018, 8, 404.	1.8	14
23	Constitutive Interferon Maintains GBP Expression Required for Release of Bacterial Components Upstream of Pyroptosis and Anti-DNA Responses. Cell Reports, 2018, 24, 155-168.e5.	2.9	77
24	A global regulatory system links virulence and antibiotic resistance to envelope homeostasis in Acinetobacter baumannii. PLoS Pathogens, 2018, 14, e1007030.	2.1	91
25	Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria. Journal of Infectious Diseases, 2017, 215, S9-S17.	1.9	122
26	A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host and Microbe, 2017, 21, 169-181.	5.1	155
27	Host Cell S Phase Restricts <i>Legionella pneumophila</i> Intracellular Replication by Destabilizing the Membrane-Bound Replication Compartment. MBio, 2017, 8, .	1.8	33
28	Innate Immunity to Intracellular Pathogens: Balancing Microbial Elimination and Inflammation. Cell Host and Microbe, 2017, 22, 166-175.	5.1	100
29	Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. MBio, 2016, 7, .	1.8	58
30	Defining heterogeneity within bacterial populations via single cell approaches. BioEssays, 2016, 38, 782-790.	1.2	100
31	Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila. Infection and Immunity, 2016, 84, 2185-2197.	1.0	17
32	CD8 + T cells specific to a single Yersinia pseudotuberculosis epitope restrict bacterial replication in the liver but fail to provide sterilizing immunity. Infection, Genetics and Evolution, 2016, 43, 289-296.	1.0	3
33	Robust bioengineered 3D functional human intestinal epithelium. Scientific Reports, 2015, 5, 13708.	1.6	131
34	Identification of Mammalian Proteins That Collaborate with Type III Secretion System Function: Involvement of a Chemokine Receptor in Supporting Translocon Activity. MBio, 2015, 6, e02023-14.	1.8	32
35	Endoplasmic Reticulum Tubule Protein Reticulon 4 Associates with the Legionella pneumophila Vacuole and with Translocated Substrate Ceg9. Infection and Immunity, 2015, 83, 3479-3489.	1.0	32
36	Antibiotic Modulation of Capsular Exopolysaccharide and Virulence in Acinetobacter baumannii. PLoS Pathogens, 2015, 11, e1004691.	2.1	464

#	Article	IF	CITATIONS
37	Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cellular Microbiology, 2015, 17, 785-795.	1.1	56
38	MavN is a <i>Legionella pneumophila</i> vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5208-17.	3.3	61
39	Inhibition of host cell translation elongation by <i>Legionella pneumophila</i> blocks the host cell unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6790-7.	3.3	59
40	Community Behavior and Spatial Regulation within a Bacterial Microcolony in Deep Tissue Sites Serves to Protect against Host Attack. Cell Host and Microbe, 2015, 17, 21-31.	5.1	117
41	Cell Biology of Salmonella Pathogenesis. , 2014, , 249-261.		6
42	Intracellular Trafficking of Legionella pneumophila within Phagocytic Cells. , 2014, , 263-278.		4
43	The Frustrated Host Response to Legionella pneumophila Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines. PLoS Pathogens, 2014, 10, e1004229.	2.1	52
44	Master manipulators: an update on <i>Legionella pneumophila</i> lcm/Dot translocated substrates and their hostÂtargets. Future Microbiology, 2014, 9, 343-359.	1.0	82
45	iMAD, a genetic screening strategy for dissecting complex interactions between a pathogen and its host. Nature Protocols, 2014, 9, 1916-1930.	5.5	5
46	Plague's Partners in Crime. Immunity, 2014, 41, 347-349.	6.6	0
47	Bacterial Pathogen Manipulation of Host Membrane Trafficking. Annual Review of Cell and Developmental Biology, 2014, 30, 79-109.	4.0	132
48	Maintenance of vacuole integrity by bacterial pathogens. Current Opinion in Microbiology, 2014, 17, 46-52.	2.3	53
49	IcmQ in the Type 4b Secretion System Contains an NAD+ Binding Domain. Structure, 2013, 21, 1361-1373.	1.6	6
50	Host Signal Transduction and Protein Kinases Implicated in Legionella Infection. Current Topics in Microbiology and Immunology, 2013, 376, 249-269.	0.7	12
51	Cdc42 interacts with the exocyst complex to promote phagocytosis. Journal of Cell Biology, 2013, 200, 81-93.	2.3	38
52	Poison Domains Block Transit of Translocated Substrates via the Legionella pneumophila Icm/Dot System. Infection and Immunity, 2013, 81, 3239-3252.	1.0	20
53	Analysis of Legionella Infection Using RNAi in Drosophila Cells. Methods in Molecular Biology, 2013, 954, 251-264.	0.4	6
54	Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival. PLoS Pathogens, 2012, 8, e1002731.	2.1	69

Ralph R Isberg

#	Article	IF	CITATIONS
55	Identification of MrtAB, an ABC Transporter Specifically Required for Yersinia pseudotuberculosis to Colonize the Mesenteric Lymph Nodes. PLoS Pathogens, 2012, 8, e1002828.	2.1	48
56	The protein SdhA maintains the integrity of the <i>Legionella</i> -containing vacuole. Proceedings of the United States of America, 2012, 109, 3481-3486.	3.3	179
57	The <i>Legionella</i> Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation. Science, 2012, 338, 1072-1076.	6.0	401
58	Aggravating Genetic Interactions Allow a Solution to Redundancy in a Bacterial Pathogen. Science, 2012, 338, 1440-1444.	6.0	113
59	The Legionella pneumophila EnhC Protein Interferes with Immunostimulatory Muramyl Peptide Production to Evade Innate Immunity. Cell Host and Microbe, 2012, 12, 166-176.	5.1	32
60	Analyzing microbial disease at high resolution: following the fate of the bacterium during infection. Current Opinion in Microbiology, 2012, 15, 23-27.	2.3	11
61	Yersinia Entry into Host Cells Requires Rab5-Dependent Dephosphorylation of PI(4,5)P2 and Membrane Scission. Cell Host and Microbe, 2012, 11, 117-128.	5.1	59
62	Control of Host Cell Phosphorylation by Legionella Pneumophila. Frontiers in Microbiology, 2011, 2, 64.	1.5	27
63	The E Block motif is associated with <i>Legionella pneumophila</i> translocated substrates. Cellular Microbiology, 2011, 13, 227-245.	1.1	177
64	Minimization of the <i>Legionella pneumophila</i> genome reveals chromosomal regions involved in host range expansion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14733-14740.	3.3	159
65	LnaB: a Legionella pneumophila activator of NF-κB. Cellular Microbiology, 2010, 12, 1083-1097.	1.1	103
66	E3 Ubiquitin Ligase Activity and Targeting of BAT3 by Multiple <i>Legionella pneumophila</i> Translocated Substrates. Infection and Immunity, 2010, 78, 3905-3919.	1.0	112
67	Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion. PLoS Pathogens, 2009, 5, e1000686.	2.1	80
68	CD8+ T Cells Restrict Yersinia pseudotuberculosis Infection: Bypass of Anti-Phagocytosis by Targeting Antigen-Presenting Cells. PLoS Pathogens, 2009, 5, e1000573.	2.1	45
69	<i>Yersinia pseudotuberculosis</i> Virulence Determinants Invasin, YopE, and YopT Modulate RhoG Activity and Localization. Infection and Immunity, 2009, 77, 4771-4782.	1.0	35
70	Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila. Structure, 2009, 17, 590-601.	1.6	16
71	The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nature Reviews Microbiology, 2009, 7, 13-24.	13.6	605
72	Large-scale identification of <i>Legionella pneumophila</i> Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cellular Microbiology, 2009, 11, 230-248.	1.1	143

#	Article	IF	CITATIONS
73	Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host and Microbe, 2009, 6, 10-21.	5.1	445
74	Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Current Opinion in Microbiology, 2009, 12, 67-73.	2.3	138
75	Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function. Molecular Microbiology, 2008, 42, 689-703.	1.2	87
76	<i>Legionella pneumophila</i> EnhC is required for efficient replication in tumour necrosis factor α-stimulated macrophages. Cellular Microbiology, 2008, 10, 1906-1923.	1.1	51
77	Lasker-Koshland Award to 21st Century Microbe Master. Cell, 2008, 134, 907-910.	13.5	2
78	The Polybasic Region of Rac1 Modulates Bacterial Uptake Independently of Self-association and Membrane Targeting. Journal of Biological Chemistry, 2008, 283, 35954-35965.	1.6	16
79	A Bifunctional Bacterial Protein Links GDI Displacement to Rab1 Activation. Science, 2007, 318, 974-977.	6.0	198
80	Growth of Yersinia pseudotuberculosis in Mice Occurs Independently of Toll-Like Receptor 2 Expression and Induction of Interleukin-10. Infection and Immunity, 2007, 75, 3561-3570.	1.0	33
81	Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cellular Microbiology, 2007, 10, 071103031556001-???.	1.1	76
82	A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18745-18750.	3.3	203
83	Targeting of Host Rab GTPase Function by the Intravacuolar Pathogen Legionella pneumophila. Developmental Cell, 2006, 11, 47-56.	3.1	328
84	Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends in Molecular Medicine, 2006, 12, 415-424.	3.5	105
85	Non-vertebrate hosts in the analysis of host–pathogen interactions. Microbes and Infection, 2006, 8, 1637-1646.	1.0	25
86	RNA Interference Analysis of Legionella in Drosophila Cells: Exploitation of Early Secretory Apparatus Dynamics. PLoS Pathogens, 2006, 2, e34.	2.1	200
87	Members of a Legionella pneumophila Family of Proteins with ExoU (Phospholipase A) Active Sites Are Translocated to Target Cells. Infection and Immunity, 2006, 74, 3597-3606.	1.0	103
88	Disruption of RhoGDI and RhoA Regulation by a Rac1 Specificity Switch Mutant. Journal of Biological Chemistry, 2006, 281, 40379-40388.	1.6	26
89	Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. Journal of Experimental Medicine, 2006, 203, 1591-1601.	4.2	134
90	NF-κB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. Journal of Experimental Medicine, 2006, 203, 2177-2189.	4.2	180

#	Article	IF	CITATIONS
91	Dictyostelium discoideum strains lacking the RtoA protein are defective for maturation of the Legionella pneumophila replication vacuole. Cellular Microbiology, 2005, 7, 431-442.	1.1	58
92	Yersinia pseudotuberculosis Spatially Controls Activation and Misregulation of Host Cell Rac1. PLoS Pathogens, 2005, 1, e16.	2.1	60
93	The DotL Protein, a Member of the TraG-Coupling Protein Family, Is Essential for Viability of Legionella pneumophila Strain Lp02. Journal of Bacteriology, 2005, 187, 2927-2938.	1.0	53
94	LidA, a Translocated Substrate of the Legionella pneumophila Type IV Secretion System, Interferes with the Early Secretory Pathway. Infection and Immunity, 2005, 73, 4370-4380.	1.0	92
95	Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake. Current Opinion in Microbiology, 2005, 8, 4-9.	2.3	46
96	IcmF and DotU Are Required for Optimal Effector Translocation and Trafficking of the Legionella pneumophila Vacuole. Infection and Immunity, 2004, 72, 5972-5982.	1.0	54
97	Macrophages from Mice with the Restrictive Lgn1 Allele Exhibit Multifactorial Resistance to Legionella pneumophila. Infection and Immunity, 2004, 72, 6221-6229.	1.0	71
98	Legionella pneumophila Replication Vacuole Formation Involves Rapid Recruitment of Proteins of the Early Secretory System. Infection and Immunity, 2004, 72, 3048-3053.	1.0	208
99	IcmR-regulated Membrane Insertion and Efflux by the Legionella pneumophila IcmQ Protein. Journal of Biological Chemistry, 2004, 279, 4686-4695.	1.6	39
100	Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 841-846.	3.3	449
101	The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Molecular Microbiology, 2003, 48, 305-321.	1.2	241
102	Arf6 and Phosphoinositol-4-Phosphate-5-Kinase Activities Permit Bypass of the Rac1 Requirement for β1 Integrin–mediated Bacterial Uptake. Journal of Experimental Medicine, 2003, 198, 603-614.	4.2	79
103	Intracellular Replication of Mycobacterium marinum within Dictyostelium discoideum : Efficient Replication in the Absence of Host Coronin. Infection and Immunity, 2003, 71, 3578-3586.	1.0	125
104	Macrophage-Induced Genes of Legionella pneumophila: Protection from Reactive Intermediates and Solute Imbalance during Intracellular Growth. Infection and Immunity, 2002, 70, 3637-3648.	1.0	56
105	Dancing with the Host. Cell, 2002, 110, 1-4.	13.5	91
106	Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Molecular Microbiology, 2001, 39, 313-330.	1.2	55
107	The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Molecular Microbiology, 2001, 40, 1113-1127.	1.2	72
108	Delivering dangerous cargoes. Nature Structural Biology, 2001, 8, 1006-1008.	9.7	4

#	Article	lF	CITATIONS
109	Legionella pneumophila Is Internalized by a Macropinocytotic Uptake Pathway Controlled by the Dot/Icm System and the Mouse Lgn1 Locus✪. Journal of Experimental Medicine, 2001, 194, 1081-1096.	4.2	142
110	Integrin beta1-chain residues involved in substrate recognition and specificity of binding to invasin. Cellular Microbiology, 2000, 2, 219-230.	1.1	11
111	Intracellular Growth of Legionella pneumophila in Dictyostelium discoideum , a System for Genetic Analysis of Host-Pathogen Interactions. Infection and Immunity, 2000, 68, 2939-2947.	1.0	205
112	Growth of Legionella pneumophila in Dictyostelium discoideum: a novel system for genetic analysis of host–pathogen interactions. Trends in Microbiology, 2000, 8, 478-480.	3.5	106
113	Crystal Structure of Invasin: A Bacterial Integrin-Binding Protein. Science, 1999, 286, 291-295.	6.0	265
114	Cell biology of Legionella pneumophila. Current Opinion in Microbiology, 1999, 2, 30-34.	2.3	149
115	Evidence for pore-forming ability by Legionella pneumophila. Molecular Microbiology, 1998, 27, 323-336.	1.2	216
116	Legionella pneumophilaDotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Molecular Microbiology, 1998, 28, 663-674.	1.2	351
117	Recombinant Soluble Human α3β1Integrin: Purification, Processing, Regulation, and Specific Binding to Laminin-5 and Invasin in a Mutually Exclusive Mannerâ€. Biochemistry, 1998, 37, 10945-10955.	1.2	109
118	Conjugative Transfer by the Virulence System of Legionella pneumophila. Science, 1998, 279, 873-876.	6.0	698
119	Identification of Linked <i>Legionella pneumophila</i> Genes Essential for Intracellular Growth and Evasion of the Endocytic Pathway. Infection and Immunity, 1998, 66, 950-958.	1.0	190
120	Transcriptional regulation of the Yersinia pseudotuberculosis pH 6 antigen adhesin by two envelopeâ€associated components. Molecular Microbiology, 1997, 24, 499-510.	1.2	72
121	Analysis of the Intracellular Fate of Legionella pneumophila Mutants. Annals of the New York Academy of Sciences, 1996, 797, 8-18.	1.8	42
122	Use of Salt to Isolate Legionella pneumophila Mutants Unable to Replicate in Macrophages. Annals of the New York Academy of Sciences, 1996, 797, 271-272.	1.8	64
123	Mutations in the Cytoplasmic Domain of the Integrin β1 Chain Indicate a Role for Endocytosis Factors in Bacterial Internalization. Journal of Biological Chemistry, 1996, 271, 7665-7672.	1.6	71
124	Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Molecular Microbiology, 1994, 14, 809-822.	1.2	256
125	Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Molecular Microbiology, 1993, 7, 7-19.	1.2	619
126	Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell, 1990, 60, 861-871.	13.5	864

#	Article	IF	CITATIONS
127	Transposition of the kanamycin-resistance transposon Tn903. Molecular Genetics and Genomics, 1980, 178, 681-689.	2.4	19
128	<i>Dictyostelium discoideum</i> : a Model Phagocyte and a Model for Host-Pathogen Interactions. , 0, , 491-P1.		1
129	Early Events in the Pathogenesis of Haemophilus influenzae Disease. , 0, , 157-172.		1
130	Molecular Pathogenesis of Enteropathogenic Escherichia coli. , 0, , 173-195.		20
131	Murine Colonic Hyperplasia. , 0, , 197-208.		5
132	Genetic Approaches to Understanding <i>Salmonella</i> Pathogenicity. , 0, , 215-234.		5
133	Mechanisms of Yersinia Entry into Mammalian Cells. , 0, , 235-247.		3
134	Cellular Biology of Listeria monocytogenes Infection. , 0, , 279-293.		17
135	Determinants of Chlamydial Pathogenesis and Immunity. , 0, , 295-308.		3
136	Genetic Analysis of the Escherichia coli K1 Capsule Gene Cluster. , 0, , 313-326.		2
137	Holistic Perspective on the Escherichia coli Hemolysin. , 0, , 351-364.		9
138	Yops of the Pathogenic Yersinia spp , 0, , 365-381.		5
139	Molecular Biology and Role in Disease of the Verotoxins (Shiga-Like Toxins) of Escherichia coli. , 0, , 391-404.		3
140	Coordinate Regulation of Virulence in <i>Bordetella pertussis</i> Mediated by the <i>vir</i> (<i>bvg</i>) Locus. , 0, , 407-422.		24
141	Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli. , 0, , 423-436.		3
142	Role of Sucrose Metabolism in the Cariogenicity of the Mutans Streptococci. , 0, , 465-477.		5
143	How Many Bacteria Does It Take To Cause Diarrhea and Why?. , 0, , 479-489.		6
144	Phylogenetic Diversity of Microbial Pathogens. , 0, , 507-517.		2

#	Article	IF	CITATIONS
145	Molecular Epidemiology: Development and Application of Molecular Methods To Solve Infectious Disease Mysteries. , 0, , 63-73.		2
146	Adherence Mechanisms in Urinary Tract Infections. , 0, , 79-90.		4
147	Escherichia coli Type 1 Pili. , 0, , 91-111.		9
148	Mechanisms of Pilus Antigenic Variation in Neisseria gonorrhoeae. , 0, , 113-126.		6
149	Type 4 Pili in the Families <i>Moraxellaceae</i> and <i>Neisseriaceae</i> . , 0, , 127-143.		2
150	Extracellular Structures and Products. , 0, , 309-311.		0
151	Virulence Gene Regulation. , 0, , 405-406.		0
152	pJM1 Plasmid-Mediated Iron Transport-Virulence System of Vibrio anguillarum. , 0, , 451-461.		0
153	Molecular Nature, Conjugal Transfer, and Replication of Extrachromosomal Elements, 1961 to 1973. , 0, , 3-16.		0
154	Transposon Tn3, 1973 to 1980. , 0, , 43-53.		0
155	Identification of Translocated Substrates of the <i>Legionella pneumophila</i> Dot/Icm System without the use of Eukaryotic Host Cells. , 0, , 167-176.		1
156	Adhesins. , 0, , 75-77.		0
157	Genes for the Filamentous Hemagglutinin and Fimbriae of Bordetella pertussis: Colocation, Coregulation, and Cooperation?. , 0, , 145-155.		6
158	Other Aspects of Bacterial Pathogenesis. , 0, , 463-464.		0
159	R Plasmids and Antibiotic Resistances. , 0, , 17-41.		1
160	Molecular and Cellular Biology of Intracellular Bacteria. , 0, , 209-213.		0
161	Unorthodox Secretion by Gram-Negative Bacteria. , 0, , 341-349.		1
162	Role of Flagella in Campylobacter Pathogenesis. , 0, , 383-389.		0

#	Article	IF	CITATIONS
163	Retrospective Look at Early Advances. , 0, , 1-1.		0
164	Genetics as a Route toward Mucosal Vaccine Development. , 0, , 491-506.		2
165	The Tao of Urease. , 0, , 437-449.		1
166	Type III Capsular Polysaccharide of Group B Streptococci: Role in Virulence and the Molecular Basis of Capsule Expression. , 0, , 327-339.		2
167	New Age Strategies To Reconstruct Mucosal Tissue Colonization and Growth in Cell Culture Systems. , 0, , 59-68.		0