
Qiuhua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile synthesis of uniform spherical covalent organic frameworks for determination of neonicotinoid insecticides. Food Chemistry, 2022, 367, 130653.	4.2	42
2	Synthesis of natural proanthocyanidin based novel magnetic nanoporous organic polymer as advanced sorbent for neonicotinoid insecticides. Food Chemistry, 2022, 373, 131572.	4.2	33
3	Construction of hydrophilic hypercrosslinked polymer based on natural kaempferol for highly effective extraction of 5-nitroimidazoles in environmental water, honey and fish samples. Journal of Hazardous Materials, 2022, 429, 128288.	6.5	66
4	Constructing magnetic covalent organic framework EB-COF@Fe3O4 for sensitive determination of five benzoylurea insecticides. Food Chemistry, 2022, 382, 132362.	4.2	31
5	Green synthesis of novel magnetic porous organic polymer for magnetic solid phase extraction of neonicotinoids in lemon juice and honey samples. Food Chemistry, 2022, 383, 132599.	4.2	28
6	Fabrication of carbonyl-functional hypercrosslinked polymers as solid-phase extraction sorbent for enrichment of chlorophenols from water, honey and beverage samples. Mikrochimica Acta, 2022, 189, 21.	2.5	18
7	Novel N-riched covalent organic framework for solid-phase microextraction of organochlorine pesticides in vegetable and fruit samples. Food Chemistry, 2022, 388, 133007.	4.2	22
8	Effective solid-phase extraction of chlorophenols with covalent organic framework material as adsorbent. Journal of Chromatography A, 2022, 1673, 463077.	1.8	6
9	Facile fabrication of tyrosine-functionalized hypercrosslinked polymer for sensitive determination of nitroimidazole antibiotics in honey and chicken muscle. Food Chemistry, 2022, 389, 133121.	4.2	15
10	Amino-functionalized hypercrosslinked polymer as sorbent for effective extraction of nitroimidazoles from water, drink and honey samples. Journal of Chromatography A, 2022, 1676, 463206.	1.8	13
11	Facile synthesis of magnetic hypercrosslinked polymer for the magnetic solid-phase extraction of benzoylurea insecticides from honey and apple juice samples. Food Chemistry, 2022, 395, 133596.	4.2	15
12	Facile fabrication of hydroxyl-functionalized hypercrosslinked polymer for sensitive determination of chlorophenols. Food Chemistry, 2022, 396, 133694.	4.2	3
13	Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous determination of four phthalate esters in plastic bottled juice. Food Chemistry, 2021, 339, 127855.	4.2	54
14	Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples. Journal of Chromatography A, 2021, 1641, 461972.	1.8	30
15	Construction of hydroxyl functionalized magnetic porous organic framework for the effective detection of organic micropollutants in water, drink and cucumber samples. Journal of Hazardous Materials, 2021, 412, 125307.	6.5	55
16	Heterocyclic frameworks as efficient sorbents for solid phase extraction-high performance liquid chromatography analysis of nitroimidazoles in chicken meat. Microchemical Journal, 2021, 165, 106096.	2.3	15
17	Triazine-triphenylphosphine based porous organic polymer as sorbent for solid phase extraction of nitroimidazoles from honey and water. Journal of Chromatography A, 2021, 1649, 462238.	1.8	36
18	Synthesis of hypercrosslinked polymers for efficient solid-phase microextraction of polycyclic aromatic hydrocarbons and their derivatives followed by gas chromatography-mass spectrometry determination. Journal of Chromatography A, 2021, 1653, 462428.	1.8	17

#	Article	IF	CITATIONS
19	Construction of imine-linked covalent organic framework as advanced adsorbent for the sensitive determination of chlorophenols. Journal of Chromatography A, 2021, 1658, 462610.	1.8	21
20	Benzoxazine Porous Organic Polymer as an Efficient Solid-Phase Extraction Adsorbent for the Enrichment of Chlorophenols from Water and Honey Samples. Journal of Chromatographic Science, 2021, 59, 396-404.	0.7	5
21	A low-cost and high-efficiency carbazole-based porous organic polymer as a novel sorbent for solid-phase extraction of triazine herbicides in vegetables. Food Chemistry, 2020, 309, 125618.	4.2	28
22	A Graphene Oxide–Based Composite for Solid-Phase Extraction of Carbamate Pesticides from Vegetables. Food Analytical Methods, 2020, 13, 690-698.	1.3	17
23	Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols. Journal of Chromatography A, 2020, 1628, 461470.	1.8	29
24	Advances in magnetic porous organic frameworks for analysis and adsorption applications. TrAC - Trends in Analytical Chemistry, 2020, 132, 116048.	5.8	37
25	Graphene intercalated with carbon nanosphere: a novel solid-phase extraction sorbent for five carbamate pesticides. Mikrochimica Acta, 2020, 187, 521.	2.5	14
26	Layered porous organic frameworks as a novel adsorbent for the solid phase extraction of chlorophenols prior to their determination by HPLC-DAD. Mikrochimica Acta, 2020, 187, 211.	2.5	12
27	Facile construction of magnetic azobenzene-based framework materials for enrichment and sensitive determination of phenylurea herbicides. Journal of Chromatography A, 2020, 1626, 461362.	1.8	14
28	Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics. ACS Catalysis, 2020, 10, 8672-8682.	5.5	130
29	Fabrication of magnetic porous organic framework for effective enrichment and assay of nitroimidazoles in chicken meat. Food Chemistry, 2020, 332, 127427.	4.2	31
30	Facile synthesis of conjugated microporous polymer with spherical structure for solid phase extraction of phenyl urea herbicides. Journal of Chromatography A, 2020, 1622, 461131.	1.8	21
31	Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Mikrochimica Acta, 2020, 187, 284.	2.5	13
32	Preparation of magnetic porous covalent triazine-based organic polymer for the extraction of carbamates prior to high performance liquid chromatography-mass spectrometric detection. Journal of Chromatography A, 2019, 1602, 178-187.	1.8	35
33	Preparation of a Magnetic Nanoporous Polymer for the Fast and Efficient Extraction of 5-Nitroimidazoles in Milk. Journal of Agricultural and Food Chemistry, 2019, 67, 11527-11535.	2.4	48
34	p-Phenylenediamine-modified graphene oxide as a sorbent for solid-phase extraction of phenylurea herbicides, nitroimidazoles, chlorophenols, phenylurea insecticides and phthalates. Mikrochimica Acta, 2019, 186, 464.	2.5	17
35	Ferrocene-based nanoporous organic polymer as solid-phase extraction sorbent for the extraction of chlorophenols from tap water, tea drink and peach juice samples. Food Chemistry, 2019, 297, 124962.	4.2	43
36	Solid phase extraction of carbamate pesticides with porous organic polymer as adsorbent followed by high performance liquid chromatography-diode array detection. Journal of Chromatography A, 2019, 1600, 9-16.	1.8	37

#	Article	IF	CITATIONS
37	Green synthesis of o-hydroxyazobenzene porous organic polymer for efficient adsorption of aromatic compounds. Journal of Chromatography A, 2019, 1583, 39-47.	1.8	25
38	Novel porous Fe3O4@C nanocomposite from magnetic metal-phenolic networks for the extraction of chlorophenols from environmental samples. Talanta, 2019, 194, 673-679.	2.9	21
39	Use of a hypercrosslinked triphenylamine polymer as an efficient adsorbent for the enrichment of phenylurea herbicides. Journal of Chromatography A, 2018, 1538, 1-7.	1.8	27
40	A hyper-cross linked polymer as an adsorbent for the extraction of chlorophenols. Mikrochimica Acta, 2018, 185, 108.	2.5	22
41	β yclodextrin polymer@Fe ₃ O ₄ based magnetic solidâ€phase extraction coupled with HPLC for the determination of benzoylurea insecticides from honey, tomato, and environmental water samples. Journal of Separation Science, 2018, 41, 1539-1547.	1.3	31
42	Magnetic mesoporous polymelamine-formaldehyde resin as an adsorbent for endocrine disrupting chemicals. Mikrochimica Acta, 2018, 185, 19.	2.5	36
43	Porphyrin based porous organic polymer modified with Fe3O4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Mikrochimica Acta, 2018, 185, 36.	2.5	42
44	A magnetic knitting aromatic polymer as a new sorbent for use in solid-phase extraction of organics. Mikrochimica Acta, 2018, 185, 554.	2.5	17
45	Covalent Organic Framework as Fiber Coating for Solid-Phase Microextraction of Chlorophenols Followed by Quantification with Gas Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 11158-11165.	2.4	63
46	Phthalocyanineâ€containing polymer derived porous carbon as a solidâ€phase extraction adsorbent for the enrichment of phenylurea herbicides from water and vegetable samples. Separation Science Plus, 2018, 1, 359-366.	0.3	7
47	Magnetic solidâ€phase extraction of benzoylurea insecticides by Fe ₃ O ₄ nanoparticles decorated with a hyperâ€crossâ€linked porous organic polymer. Journal of Separation Science, 2018, 41, 3285-3293.	1.3	23
48	ZIF-67 Templated Synthesis of Nanoporous Carbon as an Efficient Adsorbent for Preconcentration of Flunitrazepam from Beverage Samples. Food Analytical Methods, 2017, 10, 2772-2780.	1.3	7
49	Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 2338-2344.	3.2	29
50	Magnetic Nâ€doped mesoporous carbon as an adsorbent for the magnetic solidâ€phase extraction of phthalate esters from soft drinks. Journal of Separation Science, 2017, 40, 1637-1643.	1.3	19
51	Single layer graphitic carbon nitride-modified graphene composite as a fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Mikrochimica Acta, 2017, 184, 2171-2180.	2.5	39
52	Magnetic spherical carbon as an efficient adsorbent for the magnetic extraction of phthalate esters from lake water and milk samples. Journal of Separation Science, 2017, 40, 2207-2213.	1.3	10
53	Nanoporous Carbon as the Solid-Phase Extraction Adsorbent for the Extraction of Endocrine Disrupting Chemicals from Juice Samples. Food Analytical Methods, 2017, 10, 2710-2717.	1.3	22
54	Triphenylamine-based hypercrosslinked organic polymer as adsorbent for the extraction of phenylurea herbicides. Journal of Chromatography A, 2017, 1520, 48-57.	1.8	32

#	Article	IF	CITATIONS
55	Preparation of a magnetic porous organic polymer for the efficient extraction of phenylurea herbicides. Journal of Chromatography A, 2017, 1519, 19-27.	1.8	32
56	Phytic acid induced threeâ€dimensional graphene for the enrichment of phthalate esters from bottled water and sports beverage samples. Journal of Separation Science, 2017, 40, 3710-3717.	1.3	5
57	Magnetic porous carbon derived from Coâ€doped metal–organic frameworks for the magnetic solidâ€phase extraction of endocrine disrupting chemicals. Journal of Separation Science, 2017, 40, 3969-3975.	1.3	18
58	Graphene oxide cross-linked with phytic acid: an efficient adsorbent for the extraction of carbamates. Mikrochimica Acta, 2017, 184, 3773-3779.	2.5	20
59	Online Monitoring of Methanol Electro-Oxidation Reactions by Ambient Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1005-1012.	1.2	12
60	Highly sensitive mass spectrometric detection of flunitrazepam using magnetic graphene framework enrichment. Analytical Methods, 2016, 8, 6168-6175.	1.3	2
61	Application of a solidâ€phase microextraction fiber coated with a graphene oxideâ€poly(dimethylsiloxane) composite for the extraction of triazoles from water. Journal of Separation Science, 2016, 39, 3171-3177.	1.3	10
62	Graphene oxide framework: An adsorbent for solid phase extraction of phenylurea herbicides from water and celery samples. Journal of Chromatography A, 2016, 1469, 17-24.	1.8	49
63	Magnetic porous carbon derived from a metal–organic framework as a magnetic solidâ€phase extraction adsorbent for the extraction of sex hormones from water and human urine. Journal of Separation Science, 2016, 39, 3571-3577.	1.3	30
64	Magnetic porous carbon derived from a zinc-cobalt metal-organic framework: A adsorbent for magnetic solid phase extraction of flunitrazepam. Mikrochimica Acta, 2016, 183, 3009-3017.	2.5	25
65	A metal–organic framework-derived nanoporous carbon/iron composite for enrichment of endocrine disrupting compounds from fruit juices and milk samples. Analytical Methods, 2016, 8, 3528-3535.	1.3	28
66	Hollow fiber-based solid–liquid phase microextraction combined with theta capillary electrospray ionization mass spectrometry for sensitive and accurate analysis of methamphetamine. Analytical Methods, 2016, 8, 7800-7807.	1.3	11
67	Magnetic porous carbon-based solid-phase extraction of carbamates prior to HPLC analysis. Mikrochimica Acta, 2016, 183, 415-421.	2.5	35
68	Porous carbon derived from a metal-organic framework as an efficient adsorbent for the solid-phase extraction of phthalate esters. Journal of Separation Science, 2015, 38, 3928-3935.	1.3	30
69	Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides. Mikrochimica Acta, 2015, 182, 1903-1910.	2.5	74
70	Magnetic three-dimensional graphene solid-phase extraction of chlorophenols from honey samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 40-47.	1.1	28
71	Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Analytica Chimica Acta, 2015, 870, 67-74.	2.6	96
72	Determination of Carbamate Pesticides in Vegetables by Octadecyl Modified Graphene Reinforced Hollow Fiber Liquid Phase Microextraction Combined with High-Performance Liquid Chromatography. Analytical Letters, 2015, 48, 1671-1685.	1.0	14

#	Article	IF	CITATIONS
73	Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis. Talanta, 2015, 142, 104-109.	2.9	56
74	EXTRACTION OF SOME CHLOROPHENOLS FROM ENVIRONMENTAL WATERS USING A NOVEL GRAPHENE-BASED MAGNETIC NANOCOMPOSITE FOLLOWED BY HPLC DETERMINATION. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 2349-2362.	0.5	8
75	Metal–Organic Framework Derived Magnetic Nanoporous Carbon: Novel Adsorbent for Magnetic Solid-Phase Extraction. Analytical Chemistry, 2014, 86, 12199-12205.	3.2	180
76	Graphene Reinforced Hollow Fiber Liquid Phase Microextraction for the Enrichment of some Phenylurea Residues in Milk Sample. Food Analytical Methods, 2014, 7, 1097-1102.	1.3	21
77	Thin-film microextraction for the preconcentration of some endocrine disrupting chemicals in aqueous samples before chromatographic analysis. Analytical Methods, 2014, 6, 6316-6321.	1.3	20
78	Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fibre liquid microextraction followed by high performance liquid chromatographic detection. Food Chemistry, 2014, 157, 119-124.	4.2	53
79	Octadecyl-Modified Graphene as an Adsorbent for Hollow Fiber Liquid Phase Microextraction of Chlorophenols from Honey. Bulletin of the Korean Chemical Society, 2014, 35, 1011-1015.	1.0	16
80	Magnetic solid-phase extraction of neonicotinoid pesticides from pear and tomato samples using graphene grafted silica-coated Fe3O4 as the magnetic adsorbent. Analytical Methods, 2013, 5, 2809.	1.3	53
81	Determination of carbendazim and thiabendazole in apple juice by hollow fibre-based liquid phase microextraction-high performance liquid chromatography with fluorescence detection. International Journal of Environmental Analytical Chemistry, 2012, 92, 582-591.	1.8	22
82	Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC. Analytical Methods, 2012, 4, 766.	1.3	110
83	The use of grapheneâ€based magnetic nanoparticles as adsorbent for the extraction of triazole fungicides from environmental water. Journal of Separation Science, 2012, 35, 2266-2272.	1.3	77
84	Combined Use of Liquid–Liquid Microextraction and Carbon Nanotube Reinforced Hollow Fiber Microporous Membrane Solid-Phase Microextraction for the Determination of Triazine Herbicides in Water and Milk Samples by High-Performance Liquid Chromatography. Food Analytical Methods, 2012, 5, 540-550.	1.3	35
85	Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC. Mikrochimica Acta, 2012, 177, 23-30.	2.5	105
86	Determination of carbamate pesticides in water and fruit samples using carbon nanotube reinforced hollow fiber liquid-phase microextraction followed by high performance liquid chromatography. Analytical Methods, 2011, 3, 1410.	1.3	41
87	Solid-phase microextraction with a novel graphene-coated fiber coupled with high-performance liquid chromatography for the determination of some carbamates in water samples. Analytical Methods, 2011, 3, 2929.	1.3	48
88	Sensitive determination of cadmium in water, beverage and cereal samples by a novel liquid-phase microextraction coupled with flame atomic absorption spectrometry. Analytical Methods, 2011, 3, 210-216.	1.3	35
89	Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography A, 2011, 1218, 7936-7942.	1.8	275
90	Application of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in soil samples by high performance liquid chromatography. Mikrochimica Acta, 2010, 170, 59-65.	2.5	47

#	Article	IF	CITATIONS
91	Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 1773-1778.	1.8	182
92	Application of dispersive liquid–liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples. Analytical and Bioanalytical Chemistry, 2009, 393, 1755-1761.	1.9	105
93	Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5504-5510.	1.8	166
94	Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Analytica Chimica Acta, 2009, 638, 139-145.	2.6	145
95	Analysis of Carbamazepine in Tablet and Human Serum by Sweepingâ€Micellar Electrokinetic Chromatography Method. Analytical Letters, 2006, 39, 1927-1939.	1.0	13