Saskia Schlossarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381391/publications.pdf

Version: 2024-02-01

25 1,487 papers citations

20 h-index 25 g-index

27 all docs 27 docs citations

27 times ranked 1730 citing authors

#	Article	IF	CITATIONS
1	CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS Journal, 2022, 289, 4622-4645.	4.7	6
2	A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy, 2021, 17, 3124-3139.	9.1	12
3	Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e007022.	3.9	58
4	A Transgenic Mouse Model of Eccentric Left Ventricular Hypertrophy With Preserved Ejection Fraction Exhibits Alterations in the Autophagy-Lysosomal Pathway. Frontiers in Physiology, 2021, 12, 614878.	2.8	2
5	Autophagy in cardiomyopathies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118432.	4.1	29
6	Depletion of Vasohibin 1 Speeds Contraction and Relaxation in Failing Human Cardiomyocytes. Circulation Research, 2020, 127, e14-e27.	4.5	32
7	Myoarchitectural disarray of hypertrophic cardiomyopathy begins preâ€birth. Journal of Anatomy, 2019, 235, 962-976.	1.5	34
8	Disease modeling of a mutation in αâ€actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Molecular Medicine, 2019, 11, e11115.	6.9	88
9	Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue. Scientific Reports, 2019, 9, 18152.	3.3	13
10	The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM. Journal of General Physiology, 2019, 151, 18-29.	1.9	25
11	Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2019, 127, 31-43.	1.9	5
12	Activation of Autophagy Ameliorates Cardiomyopathy in <i>Mybpc3</i> -Targeted Knockin Mice. Circulation: Heart Failure, 2017, 10, .	3.9	53
13	The embryological basis of subclinical hypertrophic cardiomyopathy. Scientific Reports, 2016, 6, 27714.	3.3	29
14	The E3 ubiquitin ligase $Asb2\hat{l}^2$ is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. Journal of Molecular and Cellular Cardiology, 2015, 87, 214-224.	1.9	35
15	Sexual dimorphic response to exercise in hypertrophic cardiomyopathy-associated MYBPC3-targeted knock-in mice. Pflugers Archiv European Journal of Physiology, 2015, 467, 1303-1317.	2.8	35
16	Proteasome inhibition slightly improves cardiac function in mice with hypertrophic cardiomyopathy. Frontiers in Physiology, 2014, 5, 484.	2.8	24
17	Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nature Communications, 2014, 5, 5515.	12.8	131
18	Ubiquitin-proteasome system and hereditary cardiomyopathies. Journal of Molecular and Cellular Cardiology, 2014, 71, 25-31.	1.9	64

#	Article	IF	CITATION
19	How do MYBPC3 mutations cause hypertrophic cardiomyopathy?. Journal of Muscle Research and Cell Motility, 2012, 33, 75-80.	2.0	93
20	Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. Journal of Muscle Research and Cell Motility, 2012, 33, 5-15.	2.0	41
21	Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Research in Cardiology, 2012, 107, 235.	5.9	91
22	Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: Mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 2011, 50, 613-620.	1.9	96
23	The ubiquitin–proteasome system in cardiomyopathies. Current Opinion in Cardiology, 2011, 26, 190-195.	1.8	63
24	Nonsense-Mediated mRNA Decay and Ubiquitin–Proteasome System Regulate Cardiac Myosin-Binding Protein C Mutant Levels in Cardiomyopathic Mice. Circulation Research, 2009, 105, 239-248.	4.5	152
25	Cardiac Myosin-Binding Protein C Mutations and Hypertrophic Cardiomyopathy. Circulation, 2009, 119, 1473-1483.	1.6	275