## David Crown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381014/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Martian volcanism: Current state of knowledge and known unknowns. Chemie Der Erde, 2022, 82,<br>125886.                                                                                                                      | 0.8 | 3         |
| 2  | Distribution and Morphology of Lava Tube Systems on the Western Flank of Alba Mons, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                           | 1.5 | 3         |
| 3  | Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes. Icarus, 2021, 355, 114170.                                                                                                        | 1.1 | 9         |
| 4  | The Circum-Hellas Province. , 2021, , 92-120.                                                                                                                                                                                |     | 0         |
| 5  | The Tharsis Province. , 2021, , 36-68.                                                                                                                                                                                       |     | 0         |
| 6  | Areography. , 2021, , 20-35.                                                                                                                                                                                                 |     | 0         |
| 7  | The Importance of Field Studies for Closing Key Knowledge Gaps in Planetary Science. , 2021, 53, .                                                                                                                           |     | 0         |
| 8  | Planetary Geologic Mapping. , 2021, 53, .                                                                                                                                                                                    |     | 0         |
| 9  | Volcanic Caves as Priority Sites for Astrobiology Science. , 2021, 53, .                                                                                                                                                     |     | 2         |
| 10 | Igneous composition. , 2021, , 162-189.                                                                                                                                                                                      |     | 0         |
| 11 | The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits. Scientific Reports, 2020, 10, 10347.                                                                                                                      | 1.6 | 7         |
| 12 | Geology of the northeastern flank of Apollinaris Mons, Mars: Constraints on the erosional history from morphology, topography, and crater populations. Icarus, 2019, 333, 385-403.                                           | 1.1 | 6         |
| 13 | The Unusual Thermophysical and Surface Properties of the Daedalia Planum Lava Flows. Journal of<br>Geophysical Research E: Planets, 2019, 124, 1945-1959.                                                                    | 1.5 | 5         |
| 14 | A Global Inventory of Iceâ€Related Morphological Features on Dwarf Planet Ceres: Implications for the<br>Evolution and Current State of the Cryosphere. Journal of Geophysical Research E: Planets, 2019, 124,<br>1650-1689. | 1.5 | 33        |
| 15 | Glaciovolcanism in the Tharsis volcanic province of Mars: Implications for regional geology and hydrology. Planetary and Space Science, 2019, 169, 45-69.                                                                    | 0.9 | 13        |
| 16 | Assessing the formation of valley networks on a cold early Mars: Predictions for erosion rates and channel morphology. Icarus, 2019, 321, 216-231.                                                                           | 1.1 | 8         |
| 17 | Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting. Icarus, 2018, 305, 56-79.                                            | 1.1 | 12        |
| 18 | Large-scale lava-ice interactions on Mars: Investigating its role during Late Amazonian Central Elysium<br>Planitia volcanism and the formation of Athabasca Valles. Planetary and Space Science, 2018, 158,<br>96-109.      | 0.9 | 17        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The geology of the occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism. Icarus, 2018, 316, 128-139.                                                         | 1.1 | 26        |
| 20 | Geological mapping of the Ac-10 Rongo Quadrangle of Ceres. Icarus, 2018, 316, 140-153.                                                                                                                                   | 1.1 | 16        |
| 21 | Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus, 2018, 316, 167-190.                                                                                                                              | 1.1 | 23        |
| 22 | The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. Icarus, 2018, 316, 114-127.                                                                                                                  | 1.1 | 6         |
| 23 | Evolution of Occator Crater on (1) Ceres. Astronomical Journal, 2017, 153, 112.                                                                                                                                          | 1.9 | 50        |
| 24 | Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.<br>Geophysical Research Letters, 2017, 44, 6570-6578.                                                                        | 1.5 | 48        |
| 25 | Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars.<br>Journal of Volcanology and Geothermal Research, 2017, 342, 13-28.                                                         | 0.8 | 28        |
| 26 | THE HAMO-BASED GLOBAL GEOLOGIC MAP OF CERES FROM NASA $\hat{a} \in \mathbb{M}$ S DAWN MISSION. , 2017, , .                                                                                                               |     | 2         |
| 27 | Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled<br>Lava Flows on Mars. Remote Sensing, 2016, 8, 152.                                                                | 1.8 | 5         |
| 28 | Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms. Icarus, 2016, 271, 237-264.                                                   | 1.1 | 20        |
| 29 | Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field. Icarus, 2016, 269, 75-90.                                                                           | 1.1 | 10        |
| 30 | What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars?. Journal of Volcanology and Geothermal Research, 2016, 311, 198-216.                                 | 0.8 | 10        |
| 31 | UPDATE ON THE GLOBAL GEOLOGIC MAP OF CERES FROM NASA'S DAWN MISSION. , 2016, , .                                                                                                                                         |     | 2         |
| 32 | Comparison of "warm and wet―and "cold and icy―scenarios for early Mars in a 3â€D climate model.<br>Journal of Geophysical Research E: Planets, 2015, 120, 1201-1219.                                                     | 1.5 | 153       |
| 33 | Sources of water for the outflow channels on Mars: Implications of the Late Noachian "icy<br>highlands―model for melting and groundwater recharge on the Tharsis rise. Planetary and Space<br>Science, 2015, 108, 54-65. | 0.9 | 26        |
| 34 | Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planetary and Space Science, 2015, 106, 82-98.                        | 0.9 | 86        |
| 35 | Volcanism on Mars. , 2015, , 717-728.                                                                                                                                                                                    |     | 9         |
| 36 | Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts. Planetary and Space Science, 2015, 111, 83-99.                                                                     | 0.9 | 33        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Firn densification in a Late Noachian "icy highlands―Mars: Implications for ice sheet evolution and thermal response. Icarus, 2015, 253, 243-255.                                                                                     | 1.1 | 25        |
| 38 | Late Noachian fluvial erosion on Mars: Cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planetary and Space Science, 2015, 117, 429-435.                                                | 0.9 | 21        |
| 39 | Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies. Icarus, 2015, 248, 424-447.                                  | 1.1 | 71        |
| 40 | Volcano–ice interactions in the Arsia Mons tropical mountain glacier deposits. Icarus, 2014, 237, 315-339.                                                                                                                            | 1.1 | 40        |
| 41 | Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on<br>the volume of remnant, midlatitude debris-covered glaciers. Journal of Geophysical Research E:<br>Planets, 2014, 119, 2188-2196. | 1.5 | 78        |
| 42 | The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarctic Science, 2014, 26, 774-800.                                                                                           | 0.5 | 84        |
| 43 | Lunar floorâ€fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. Journal of Geophysical Research, 2012, 117, .                                                      | 3.3 | 99        |
| 44 | Hollows on Mercury: MESSENGER Evidence for Geologically Recent Volatile-Related Activity. Science, 2011, 333, 1856-1859.                                                                                                              | 6.0 | 136       |
| 45 | Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse,<br>Mars. Icarus, 2011, 213, 150-194.                                                                                                    | 1.1 | 17        |
| 46 | Volcanism on Io: New insights from global geologic mapping. Icarus, 2011, 214, 91-112.                                                                                                                                                | 1.1 | 67        |
| 47 | Watershed modeling in the Tyrrhena Terra region of Mars. Journal of Geophysical Research, 2010, 115, .                                                                                                                                | 3.3 | 18        |
| 48 | Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition<br>of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science Letters,<br>2010, 294, 306-320.  | 1.8 | 154       |
| 49 | Geologic history of Mars. Earth and Planetary Science Letters, 2010, 294, 185-203.                                                                                                                                                    | 1.8 | 538       |
| 50 | Degradation of mid-latitude craters on Mars. Icarus, 2009, 200, 77-95.                                                                                                                                                                | 1.1 | 42        |
| 51 | The Circum-Hellas Volcanic Province, Mars: Overview. Planetary and Space Science, 2009, 57, 895-916.                                                                                                                                  | 0.9 | 83        |
| 52 | A recent ice age on Mars: Evidence for climate oscillations from regional layering in midâ€latitude<br>mantling deposits. Geophysical Research Letters, 2009, 36, .                                                                   | 1.5 | 63        |
| 53 | Origin of the Medusae Fossae Formation, Mars: Insights from a synoptic approach. Journal of Geophysical Research, 2008, 113, .                                                                                                        | 3.3 | 141       |
| 54 | Tyrrhena Patera: Geologic history derived from <i>Mars Express</i> High Resolution Stereo Camera.<br>Journal of Geophysical Research, 2008, 113, .                                                                                    | 3.3 | 42        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Heat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms. Annals of Glaciology, 2007, 45, 1-13.                                             | 2.8 | 54        |
| 56 | Hadriaca Patera: Insights into its volcanic history from Mars Express High Resolution Stereo Camera.<br>Journal of Geophysical Research, 2007, 112, .                                                        | 3.3 | 38        |
| 57 | Geologic mapping of the Amirani–Gish Bar region of Io: Implications for the global geologic mapping of Io. Icarus, 2007, 186, 204-217.                                                                       | 1.1 | 17        |
| 58 | Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography. Icarus, 2007, 188, 315-323.               | 1.1 | 147       |
| 59 | The Martian hydrologic system: Multiple recharge centers at large volcanic provinces and the contribution of snowmelt to outflow channel activity. Planetary and Space Science, 2007, 55, 315-332.           | 0.9 | 38        |
| 60 | Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation.<br>Geophysical Research Letters, 2006, 33, .                                                                   | 1.5 | 109       |
| 61 | Alba Patera, Mars: Topography, structure, and evolution of a unique late Hesperian–early Amazonian<br>shield volcano. Journal of Geophysical Research, 2006, 111, .                                          | 3.3 | 37        |
| 62 | Headward growth of chasmata by volatile outbursts, collapse, and drainage: Evidence from Ganges<br>chaos, Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.                                             | 1.5 | 27        |
| 63 | Formation of a terraced fan deposit in Coprates Catena, Mars. Icarus, 2006, 184, 436-451.                                                                                                                    | 1.1 | 33        |
| 64 | A simplified two-component model for the lateral growth of pahoehoe lobes. Journal of Volcanology and Geothermal Research, 2006, 157, 331-342.                                                               | 0.8 | 5         |
| 65 | Millochau crater, Mars: Infilling and erosion of an ancient highland impact crater. Icarus, 2005, 175, 335-359.                                                                                              | 1.1 | 18        |
| 66 | The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars. Icarus, 2005, 178, 465-486.                                                                         | 1.1 | 68        |
| 67 | Surface characteristics and degradational history of debris aprons in the Tempe Terra/Mareotis fossae region of Mars. Icarus, 2005, 179, 24-42.                                                              | 1.1 | 51        |
| 68 | Mantle and gully associations along the walls of Dao and Harmakhis Valles, Mars. Geophysical<br>Research Letters, 2005, 32, .                                                                                | 1.5 | 21        |
| 69 | Mapping the structure and depth of lava tubes using ground penetrating radar. Geophysical Research<br>Letters, 2005, 32, .                                                                                   | 1.5 | 25        |
| 70 | Styles and timing of volatile-driven activity in the eastern Hellas region of Mars. Journal of Geophysical Research, 2005, 110, .                                                                            | 3.3 | 56        |
| 71 | Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai′i, using integrated field and remote sensing analyses. Journal of Volcanology and Geothermal Research, 2004, 135, 169-193. | 0.8 | 30        |
| 72 | The unique radar properties of silicic lava domes. Journal of Geophysical Research, 2004, 109, .                                                                                                             | 3.3 | 28        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus, 2003, 163, 46-65.                                                                               | 1.1 | 154       |
| 74 | Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophysical Research Letters, 2003, 30, . | 1.5 | 143       |
| 75 | Heat transfer and melting in subglacial basaltic volcanic eruptions: implications for volcanic deposit morphology and meltwater volumes. Geological Society Special Publication, 2002, 202, 5-26. | 0.8 | 40        |
| 76 | Mars: a review and synthesis of general environments and geological settings of magma-H2O interactions. Geological Society Special Publication, 2002, 202, 27-57.                                 | 0.8 | 39        |
| 77 | Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. Journal of<br>Geophysical Research, 2002, 107, 9-1.                                                      | 3.3 | 24        |
| 78 | Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. Journal of Geophysical Research, 2002, 107, 3-1.                           | 3.3 | 238       |
| 79 | Extension and uplift at Alba Patera, Mars: Insights from MOLA observations and loading models.<br>Journal of Geophysical Research, 2001, 106, 23769-23809.                                        | 3.3 | 27        |
| 80 | Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars.<br>Journal of Geophysical Research, 2001, 106, 23689-23722.                                      | 3.3 | 1,344     |
| 81 | Color and Morphology of Lava Flows on Io. Icarus, 2000, 148, 407-418.                                                                                                                             | 1.1 | 0         |
| 82 | Kilometer-scale roughness of Mars: Results from MOLA data analysis. Journal of Geophysical<br>Research, 2000, 105, 26695-26711.                                                                   | 3.3 | 313       |
| 83 | Pahoehoe toe dimensions, morphology, and branching relationships at Mauna Ulu, Kilauea Volcano,<br>Hawai'i. Bulletin of Volcanology, 1999, 61, 288-305.                                           | 1.1 | 39        |
| 84 | Downflow width behavior of Martian and terrestrial lava flows. Journal of Geophysical Research,<br>1999, 104, 8473-8488.                                                                          | 3.3 | 18        |
| 85 | Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions.<br>Bulletin of the Geological Society of America, 1998, 110, 1258-1267.                          | 1.6 | 50        |
| 86 | Calderas on Mars: characteristics, structure, and associated flank deformation. Geological Society<br>Special Publication, 1996, 110, 307-348.                                                    | 0.8 | 92        |
| 87 | Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms.<br>Reviews of Geophysics, 1994, 32, 221.                                                           | 9.0 | 313       |
| 88 | Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. Journal of Geophysical<br>Research, 1993, 98, 3431-3451.                                                               | 3.3 | 136       |
| 89 | Geologic evolution of the east rim of the Hellas basin Mars. Icarus, 1992, 100, 1-25.                                                                                                             | 1.1 | 106       |
| 90 | Observations of industrial sulfur flows: Implications for Io. Icarus, 1990, 84, 374-402.                                                                                                          | 1.1 | 21        |

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Volcanic geology of Tyrrhena Patera, Mars. Journal of Geophysical Research, 1990, 95, 7133-7149.                                               | 3.3  | 152       |
| 92 | Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra.<br>Icarus, 1987, 72, 492-506.           | 1.1  | 111       |
| 93 | Planetology: Sulphur and volcanism on Io. Nature, 1986, 322, 593-594.                                                                          | 13.7 | 1         |
| 94 | Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92.                       | 9.0  | 115       |
| 95 | Lunar floorâ€fractured craters: Evidence for viscous relaxation of crater topography. Journal of<br>Geophysical Research, 1981, 86, 9537-9552. | 3.3  | 55        |