Rémi J Creusot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381004/publications.pdf Version: 2024-02-01

PÃOMI L OFUSOT

#	Article	IF	CITATIONS
1	Modeling human T1D-associated autoimmune processes. Molecular Metabolism, 2022, 56, 101417.	6.5	13
2	Rapid video-based deep learning of cognate versus non-cognate T cell-dendritic cell interactions. Scientific Reports, 2022, 12, 559.	3.3	3
3	Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110987119.	7.1	3
4	Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes. Diabetes, 2021, 70, 1334-1346.	0.6	11
5	Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. Journal of Autoimmunity, 2021, 119, 102612.	6.5	4
6	Orchestrating multiplexity in polychromatic science through <scp>OMIPs</scp> : A decadeâ€old resource to empower biomedical research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 866-874.	1.5	3
7	60-LB: Dendritic Cells Engineered with Tailored Multiepitopes-Encoding mRNA as Precision Medicine for Immunotherapy of Type 1 Diabetes. Diabetes, 2021, 70, .	0.6	0
8	Nanoparticles versus Dendritic Cells as Vehicles to Deliver mRNA Encoding Multiple Epitopes for Immunotherapy. Molecular Therapy - Methods and Clinical Development, 2020, 16, 50-62.	4.1	28
9	Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. Journal of Translational Autoimmunity, 2020, 3, 100061.	4.0	9
10	Optimization of tamoxifen-induced Cre activity and its effect on immune cell populations. Scientific Reports, 2020, 10, 15244.	3.3	55
11	How Safe Are Universal Pluripotent Stem Cells?. Cell Stem Cell, 2020, 26, 307-308.	11.1	14
12	Tissue-Engineered Stromal Reticula to Study Lymph Node Fibroblastic Reticular Cells in Type I Diabetes. Cellular and Molecular Bioengineering, 2020, 13, 419-434.	2.1	5
13	Promising non-viral vector for efficient and versatile delivery of mRNA for antigen-specific immunotherapy. Cell & Gene Therapy Insights, 2020, 6, 1399-1409.	0.1	0
14	Phenotypic alterations in pancreatic lymph node stromal cells from human donors with type 1 diabetes and NOD mice. Diabetologia, 2019, 62, 2040-2051.	6.3	11
15	Soluble Antigen Arrays Displaying Mimotopes Direct the Response of Diabetogenic T Cells. ACS Chemical Biology, 2019, 14, 1436-1448.	3.4	9
16	Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Scientific Reports, 2019, 9, 4965.	3.3	0
17	Humanized Mice Reveal New Insights Into the Thymic Selection of Human Autoreactive CD8+ T Cells. Frontiers in Immunology, 2019, 10, 63.	4.8	14
18	A multi-epitope DNA vaccine enables a broad engagement of diabetogenic T cells for tolerance in Type 1 diabetes. Journal of Autoimmunity, 2019, 98, 13-23.	6.5	20

Réмі J Creusot

#	Article	IF	CITATIONS
19	Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy?. Diabetes, 2018, 67, 1481-1494.	0.6	27
20	PPARγ deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. Journal of Clinical Investigation, 2018, 128, 2600-2612.	8.2	40
21	Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38.	4.1	9
22	Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells, 2016, 34, 809-819.	3.2	10
23	Toward beta cell replacement for diabetes. EMBO Journal, 2015, 34, 841-855.	7.8	40
24	Inflammation and Hyperglycemia MediateDeaf1Splicing in the Pancreatic Lymph Nodes via Distinct Pathways During Type 1 Diabetes. Diabetes, 2015, 64, 604-617.	0.6	21
25	lt's Time to Bring Dendritic Cell Therapy to Type 1 Diabetes. Diabetes, 2014, 63, 20-30.	0.6	50
26	Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3. Journal of Molecular Cell Biology, 2013, 5, 99-110.	3.3	42
27	Initiating type I diabetes: new suspects in the lineup. Nature Medicine, 2013, 19, 18-20.	30.7	6
28	Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nature Chemical Biology, 2012, 8, 990-998.	8.0	73
29	NF-κB in DCs: it takes effort to be immature. Nature Medicine, 2011, 17, 1554-1556.	30.7	4
30	Inflammation-induced Changes in Deaf1 Splicing Alter Peripheral Tissue Antigen Gene Expression in the Pancreatic Lymph Node during the Pathogenesis of Type I Diabetes. Clinical Immunology, 2010, 135, S72.	3.2	1
31	A Short Pulse of IL-4 Delivered by DCs Electroporated With Modified mRNA Can Both Prevent and Treat Autoimmune Diabetes in NOD Mice. Molecular Therapy, 2010, 18, 2112-2120.	8.2	52
32	Glycogen synthase kinase 3β missplicing contributes to leukemia stem cell generation. Proceedings of the United States of America, 2009, 106, 3925-3929.	7.1	229
33	T.14. A Short Pulse of IL-4 Delivered Locally by mRNA Electroporated DCs is Sufficient to Prevent or Treat Autoimmune Diabetes in NOD Mice. Clinical Immunology, 2009, 131, S53.	3.2	0
34	F.86. Deaf1 Isoforms Control Changes in Peripheral Tissue Antigen Gene Expression in the Non-obese Diabetic Mouse Pancreatic Lymph Node during Type I Diabetes Pathogenesis. Clinical Immunology, 2009, 131, S117.	3.2	0
35	Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nature Immunology, 2009, 10, 1026-1033.	14.5	134
36	Lymphoid tissue–specific homing of bone marrow–derived dendritic cells. Blood, 2009, 113, 6638-6647.	1.4	57

Réмі J Creusot

#	Article	IF	CITATIONS
37	TSC-6 protein expression in the pancreatic islets of NOD mice. Journal of Molecular Histology, 2008, 39, 585-593.	2.2	11
38	Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clinical Immunology, 2008, 127, 176-187.	3.2	75
39	Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clinical Immunology, 2008, 129, 195-201.	3.2	53
40	Multimodality imaging of T-cell hybridoma trafficking in collagen-induced arthritic mice: image-based estimation of the number of cells accumulating in mouse paws. Journal of Biomedical Optics, 2007, 12, 064025.	2.6	22
41	Targeted Cellular Gene Therapy Using IL-4 Secreting DCs Corrects Immune Dysregulations and Prevents Diabetes in NOD Mice. Clinical Immunology, 2007, 123, S17.	3.2	0
42	Missplicing of Glycogen Synthase Kinase 3β: A Potential Mechanism of Blast Crisis Chronic Myeloid Leukemia Stem Cell Generation Blood, 2007, 110, 775-775.	1.4	4
43	Aberrant Regulation of Wnt/Beta-Catenin Pathway Mediators in Chronic Myelogenous Leukemia Stem Cells Blood, 2006, 108, 2135-2135.	1.4	2
44	Targeted gene therapy of autoimmune diseases: advances and prospects. Expert Review of Clinical Immunology, 2005, 1, 385-404.	3.0	2
45	IFN-Â gene expression is controlled by the architectural transcription factor HMGA1. International Immunology, 2005, 17, 297-306.	4.0	13
46	Bioluminescent Imaging of Human Leukemic Stem Cell Engraftment Blood, 2005, 106, 696-696.	1.4	1
47	Murine CD4+CD25+ Regulatory T Cells Fail to Undergo Chromatin Remodeling Across the Proximal Promoter Region of the IL-2 Gene. Journal of Immunology, 2004, 173, 4994-5001.	0.8	66
48	How DCs control cross-regulation between lymphocytes. Trends in Immunology, 2004, 25, 126-131.	6.8	19
49	Gene therapy for type 1 diabetes: a novel approach for targeted treatment of autoimmunity. Journal of Clinical Investigation, 2004, 114, 892-894.	8.2	8
50	Instruction of naive CD4+ T cells by polarized CD4+ T cells within dendritic cell clusters. European Journal of Immunology, 2003, 33, 1686-1696.	2.9	20
51	Local Cooperation Dominates Over Competition Between CD4+ T Cells of Different Antigen/MHC Specificity. Journal of Immunology, 2003, 171, 240-246.	0.8	23
52	Early commitment of adoptively transferred CD4+ T cells following particle-mediated DNA vaccination: implications for the study of immunomodulation. Vaccine, 2001, 19, 1678-1687.	3.8	16