Rémi J Creusot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381004/publications.pdf

Version: 2024-02-01

52 papers 1,336 citations

³⁹⁴⁴²¹
19
h-index

36 g-index

57 all docs 57 docs citations

57 times ranked

2262 citing authors

#	Article	IF	CITATIONS
1	Glycogen synthase kinase $3\hat{l}^2$ missplicing contributes to leukemia stem cell generation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3925-3929.	7.1	229
2	Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nature Immunology, 2009, 10, 1026-1033.	14.5	134
3	Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clinical Immunology, 2008, 127, 176-187.	3.2	75
4	Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nature Chemical Biology, 2012, 8, 990-998.	8.0	73
5	Murine CD4+CD25+ Regulatory T Cells Fail to Undergo Chromatin Remodeling Across the Proximal Promoter Region of the IL-2 Gene. Journal of Immunology, 2004, 173, 4994-5001.	0.8	66
6	Lymphoid tissue–specific homing of bone marrow–derived dendritic cells. Blood, 2009, 113, 6638-6647.	1.4	57
7	Optimization of tamoxifen-induced Cre activity and its effect on immune cell populations. Scientific Reports, 2020, 10, 15244.	3.3	55
8	Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clinical Immunology, 2008, 129, 195-201.	3.2	53
9	A Short Pulse of IL-4 Delivered by DCs Electroporated With Modified mRNA Can Both Prevent and Treat Autoimmune Diabetes in NOD Mice. Molecular Therapy, 2010, 18, 2112-2120.	8.2	52
10	lt's Time to Bring Dendritic Cell Therapy to Type 1 Diabetes. Diabetes, 2014, 63, 20-30.	0.6	50
11	Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3. Journal of Molecular Cell Biology, 2013, 5, 99-110.	3.3	42
12	Toward beta cell replacement for diabetes. EMBO Journal, 2015, 34, 841-855.	7.8	40
13	PPARγ deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. Journal of Clinical Investigation, 2018, 128, 2600-2612.	8.2	40
14	Nanoparticles versus Dendritic Cells as Vehicles to Deliver mRNA Encoding Multiple Epitopes for Immunotherapy. Molecular Therapy - Methods and Clinical Development, 2020, 16, 50-62.	4.1	28
15	Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy?. Diabetes, 2018, 67, 1481-1494.	0.6	27
16	Local Cooperation Dominates Over Competition Between CD4+ T Cells of Different Antigen/MHC Specificity. Journal of Immunology, 2003, 171, 240-246.	0.8	23
17	Multimodality imaging of T-cell hybridoma trafficking in collagen-induced arthritic mice: image-based estimation of the number of cells accumulating in mouse paws. Journal of Biomedical Optics, 2007, 12, 064025.	2.6	22
18	Inflammation and Hyperglycemia MediateDeaf1Splicing in the Pancreatic Lymph Nodes via Distinct Pathways During Type 1 Diabetes. Diabetes, 2015, 64, 604-617.	0.6	21

#	Article	IF	CITATIONS
19	Instruction of naive CD4+ T cells by polarized CD4+ T cells within dendritic cell clusters. European Journal of Immunology, 2003, 33, 1686-1696.	2.9	20
20	A multi-epitope DNA vaccine enables a broad engagement of diabetogenic T cells for tolerance in Type 1 diabetes. Journal of Autoimmunity, 2019, 98, 13-23.	6.5	20
21	How DCs control cross-regulation between lymphocytes. Trends in Immunology, 2004, 25, 126-131.	6.8	19
22	Early commitment of adoptively transferred CD4+ T cells following particle-mediated DNA vaccination: implications for the study of immunomodulation. Vaccine, 2001, 19, 1678-1687.	3.8	16
23	Humanized Mice Reveal New Insights Into the Thymic Selection of Human Autoreactive CD8+ T Cells. Frontiers in Immunology, 2019, 10, 63.	4.8	14
24	How Safe Are Universal Pluripotent Stem Cells?. Cell Stem Cell, 2020, 26, 307-308.	11.1	14
25	IFN-Â gene expression is controlled by the architectural transcription factor HMGA1. International Immunology, 2005, 17, 297-306.	4.0	13
26	Modeling human T1D-associated autoimmune processes. Molecular Metabolism, 2022, 56, 101417.	6.5	13
27	TSG-6 protein expression in the pancreatic islets of NOD mice. Journal of Molecular Histology, 2008, 39, 585-593.	2.2	11
28	Phenotypic alterations in pancreatic lymph node stromal cells from human donors with type 1 diabetes and NOD mice. Diabetologia, 2019, 62, 2040-2051.	6.3	11
29	Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes. Diabetes, 2021, 70, 1334-1346.	0.6	11
30	Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells, 2016, 34, 809-819.	3.2	10
31	Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. Molecular Therapy - Methods and Clinical Development, 2017, 4, 27-38.	4.1	9
32	Soluble Antigen Arrays Displaying Mimotopes Direct the Response of Diabetogenic T Cells. ACS Chemical Biology, 2019, 14, 1436-1448.	3.4	9
33	Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. Journal of Translational Autoimmunity, 2020, 3, 100061.	4.0	9
34	Gene therapy for type 1 diabetes: a novel approach for targeted treatment of autoimmunity. Journal of Clinical Investigation, 2004, 114, 892-894.	8.2	8
35	Initiating type I diabetes: new suspects in the lineup. Nature Medicine, 2013, 19, 18-20.	30.7	6
36	Tissue-Engineered Stromal Reticula to Study Lymph Node Fibroblastic Reticular Cells in Type I Diabetes. Cellular and Molecular Bioengineering, 2020, 13, 419-434.	2.1	5

#	Article	IF	CITATIONS
37	NF-κB in DCs: it takes effort to be immature. Nature Medicine, 2011, 17, 1554-1556.	30.7	4
38	Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. Journal of Autoimmunity, 2021, 119, 102612.	6.5	4
39	Missplicing of Glycogen Synthase Kinase $3\hat{l}^2$: A Potential Mechanism of Blast Crisis Chronic Myeloid Leukemia Stem Cell Generation Blood, 2007, 110, 775-775.	1.4	4
40	Orchestrating multiplexity in polychromatic science through ⟨scp⟩OMIPs⟨/scp⟩: A decadeâ€old resource to empower biomedical research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 866-874.	1.5	3
41	Rapid video-based deep learning of cognate versus non-cognate T cell-dendritic cell interactions. Scientific Reports, 2022, 12, 559.	3.3	3
42	Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110987119.	7.1	3
43	Targeted gene therapy of autoimmune diseases: advances and prospects. Expert Review of Clinical Immunology, 2005, 1, 385-404.	3.0	2
44	Aberrant Regulation of Wnt/Beta-Catenin Pathway Mediators in Chronic Myelogenous Leukemia Stem Cells Blood, 2006, 108, 2135-2135.	1.4	2
45	Inflammation-induced Changes in Deaf1 Splicing Alter Peripheral Tissue Antigen Gene Expression in the Pancreatic Lymph Node during the Pathogenesis of Type I Diabetes. Clinical Immunology, 2010, 135, S72.	3.2	1
46	Bioluminescent Imaging of Human Leukemic Stem Cell Engraftment Blood, 2005, 106, 696-696.	1.4	1
47	Targeted Cellular Gene Therapy Using IL-4 Secreting DCs Corrects Immune Dysregulations and Prevents Diabetes in NOD Mice. Clinical Immunology, 2007, 123, S17.	3.2	0
48	T.14. A Short Pulse of IL-4 Delivered Locally by mRNA Electroporated DCs is Sufficient to Prevent or Treat Autoimmune Diabetes in NOD Mice. Clinical Immunology, 2009, 131, S53.	3.2	0
49	F.86. Deaf1 Isoforms Control Changes in Peripheral Tissue Antigen Gene Expression in the Non-obese Diabetic Mouse Pancreatic Lymph Node during Type I Diabetes Pathogenesis. Clinical Immunology, 2009, 131, S117.	3.2	0
50	Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Scientific Reports, 2019, 9, 4965.	3.3	0
51	60-LB: Dendritic Cells Engineered with Tailored Multiepitopes-Encoding mRNA as Precision Medicine for Immunotherapy of Type 1 Diabetes. Diabetes, 2021, 70, .	0.6	0
52	Promising non-viral vector for efficient and versatile delivery of mRNA for antigen-specific immunotherapy. Cell & Gene Therapy Insights, 2020, 6, 1399-1409.	0.1	0