
Lili Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method. Superlattices and Microstructures, 2011, 49, 644-653.	3.1	133
2	High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. Royal Society Open Science, 2019, 6, 181757.	2.4	85
3	Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydrate Polymers, 2021, 251, 117018.	10.2	84
4	Cellulose-supported magnetic Fe3O4–MOF composites for enhanced dye removal application. Cellulose, 2019, 26, 4909-4920.	4.9	69
5	Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12655-12663.	6.7	69
6	A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose, 2018, 25, 7043-7051.	4.9	61
7	Preparation of High-Strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 2998-3009.	6.7	60
8	Macro-/nanoporous Al-doped ZnO/cellulose composites based on tunable cellulose fiber sizes for enhancing photocatalytic properties. Carbohydrate Polymers, 2020, 250, 116873.	10.2	57
9	Rapid dissolution of cellulose in an AlCl ₃ /ZnCl ₂ aqueous system at room temperature and its versatile adaptability in functional materials. Green Chemistry, 2022, 24, 885-897.	9.0	54
10	Dissolution of Lignocelluloses with a High Lignin Content in a <i>N</i> -Methylmorpholine- <i>N</i> -oxide Monohydrate Solvent System via Simple Glycerol-Swelling and Mechanical Pretreatments. Journal of Agricultural and Food Chemistry, 2017, 65, 9587-9594.	5.2	42
11	Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal. Cellulose, 2018, 25, 7315-7328.	4.9	42
12	Contribution of lignin to the microstructure and physical performance of three-dimensional lignocellulose hydrogels. Cellulose, 2019, 26, 2375-2388.	4.9	38
13	Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy. Nanomaterials, 2019, 9, 277.	4.1	36
14	Cellulose controlled zinc oxide nanoparticles with adjustable morphology and their photocatalytic performances. Carbohydrate Polymers, 2021, 259, 117752.	10.2	36
15	Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds. Carbohydrate Polymers, 2022, 281, 119083.	10.2	36
16	Contribution of lignin in esterified lignocellulose nanofibers (LCNFs) prepared by deep eutectic solvent treatment to the interface compatibility of LCNF/PLA composites. Industrial Crops and Products, 2021, 166, 113460.	5.2	26
17	Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation. International Journal of Biological Macromolecules, 2021, 191, 422-431.	7.5	25
18	Screw extrusion pretreatment for high-yield lignocellulose nanofibrils (LCNF) production from wood biomass and non-wood biomass. Carbohydrate Polymers, 2022, 277, 118897.	10.2	25

Lili Zhang

#	Article	IF	CITATIONS
19	Stable Suspensions of Lignocellulose Nanofibrils (LCNFs) Dispersed in Organic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 15989-15997.	6.7	19
20	Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions. International Journal of Biological Macromolecules, 2022, 207, 23-30.	7.5	17
21	Strengthened cellulosic gels by the chemical gelation of cellulose via crosslinking with TEOS. Cellulose, 2019, 26, 9819-9829.	4.9	12
22	Porous cellulose gel-regulated flower-like ZnO-Cu nanoparticles for enhancing interfacial catalysis activity and recyclability in environmental catalysis. Applied Surface Science, 2022, 597, 153737.	6.1	12
23	Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater. Cellulose, 2017, 24, 5069-5078.	4.9	10
24	Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin <i>via</i> hydrogelation and mineralization. Green Chemistry, 2022, 24, 1308-1317.	9.0	8
25	Fabrication of Composite Ultrafiltration Membrane by Coating Urea Formaldehyde Resin on Filter Paper. Coatings, 2020, 10, 482.	2.6	3
26	All-weather Ag–ZnO/cellulose photocatalysts tailored by surface groups and aspect ratios of cellulose nanofibers. Cellulose, 2022, 29, 2289-2304.	4.9	3
27	Facile preparation of self-assembled high-performance cellulose based composite. Composites Science and Technology, 2022, 221, 109311.	7.8	2