Niles P Donegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380745/publications.pdf

Version: 2024-02-01

28 2,148 20 28
papers citations h-index g-index

31 31 31 2969
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 2016, 1, .	13.3	508
2	Heparin Stimulates <i>Staphylococcus aureus</i> Biofilm Formation. Infection and Immunity, 2005, 73, 4596-4606.	2.2	247
3	Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology, 2010, 6, 41-45.	8.0	189
4	Evaluation of a Tetracycline-Inducible Promoter in Staphylococcus aureus In Vitro and In Vivo and Its Application in Demonstrating the Role of sigB in Microcolony Formation. Infection and Immunity, 2001, 69, 7851-7857.	2.2	173
5	Proteolytic Regulation of Toxin-Antitoxin Systems by ClpPC in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 1416-1422.	2.2	105
6	Regulation of the <i>mazEF</i> Toxin-Antitoxin Module in <i>Staphylococcus aureus</i> and Its Impact on <i>sigB</i> Expression. Journal of Bacteriology, 2009, 191, 2795-2805.	2.2	94
7	Characterization of MazF Sa , an Endoribonuclease from Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 8871-8879.	2.2	74
8	Overexpression of MazF Sa in Staphylococcus aureus Induces Bacteriostasis by Selectively Targeting mRNAs for Cleavage. Journal of Bacteriology, 2009, 191, 2051-2059.	2.2	73
9	<i>In Vivo</i> Bioluminescence Imaging To Evaluate Systemic and Topical Antibiotics against Community-Acquired Methicillin-Resistant Staphylococcus aureus-Infected Skin Wounds in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 855-863.	3.2	73
10	Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in <i>Staphylococcus aureus</i> That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory System. Infection and Immunity, 2008, 76, 2469-2477.	2.2	70
11	The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. MBio, 2019, 10, .	4.1	68
12	Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections. Journal of Investigative Dermatology, 2011, 131, 907-915.	0.7	63
13	Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa. ELife, 2019, 8, .	6.0	56
14	Association of Acyl-CoA Synthetase-1 with GLUT4-containing Vesicles. Journal of Biological Chemistry, 1998, 273, 3132-3135.	3.4	53
15	Site-Specific Mutation of the Sensor Kinase GraS in Staphylococcus aureus Alters the Adaptive Response to Distinct Cationic Antimicrobial Peptides. Infection and Immunity, 2014, 82, 5336-5345.	2.2	41
16	Influences of İf ^{B < /sup> and <i> agr < /i > on expression of staphylococcal enterotoxin B (<i> seb < /i >) in <i> Staphylococcus aureus < /i > . Canadian Journal of Microbiology, 2004, 50, 351-360.</i></i></i>}	1.7	34
17	The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action. Infection and Immunity, 2016, 84, 459-466.	2.2	33
18	Role of Adaptor TrfA and ClpPC in Controlling Levels of SsrA-Tagged Proteins and Antitoxins in Staphylococcus aureus. Journal of Bacteriology, 2014, 196, 4140-4151.	2.2	29

#	Article	IF	CITATION
19	Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection. Journal of Infectious Diseases, 2018, 218, 1367-1377.	4.0	29
20	Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. Journal of Medical Microbiology, 2016, 65, 848-857.	1.8	24
21	Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis. Journal of Bacteriology, 2017, 199, .	2.2	22
22	Improving Transformation of Staphylococcus aureus Belonging to the CC1, CC5 and CC8 Clonal Complexes. PLoS ONE, 2015, 10, e0119487.	2.5	20
23	The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. Journal of Infectious Diseases, 2020, 222, 1188-1198.	4.0	19
24	CspA regulation of $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$ carotenoid levels and $ f \rangle B \langle sup \rangle B \langle sup \rangle$ activity is controlled by YjbH and Spx. Molecular Microbiology, 2019, 112, 532-551.	2.5	16
25	The Staphylococcus-Specific Gene <i>rsr</i> Represses <i>agr</i> and Virulence in <i>Staphylococcus aureus</i> Infection and Immunity, 2010, 78, 4384-4391.	2.2	14
26	Crystallization of the Staphylococcus aureus Maz FmRNA interferase. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 386-389.	0.7	5
27	The <i>Staphylococcus aureus</i> toxin–antitoxin system YefM–YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation. Journal of Bone and Joint Infection, 2021, 6, 241-253.	1.5	5
28	Role of the Staphylococcus aureus Extracellular Loop of GraS in Resistance to Distinct Human Defense Peptides in PMN and Invasive Cardiovascular infections. Infection and Immunity, 2021, 89, e0034721.	2.2	5