Renhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380437/publications.pdf Version: 2024-02-01

RENHONCL

#	Article	IF	CITATIONS
1	Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chemistry, 2010, 12, 212.	9.0	128
2	The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Applied Catalysis B: Environmental, 2017, 218, 20-31.	20.2	113
3	Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. Journal of Hazardous Materials, 2016, 303, 1-9.	12.4	84
4	Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst. ACS Catalysis, 2017, 7, 1478-1484.	11.2	74
5	TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications, 2012, 19, 96-99.	3.3	66
6	Directional oxygen activation by oxygen-vacancy-rich WO ₂ nanorods for superb hydrogen evolution <i>via</i> formaldehyde reforming. Journal of Materials Chemistry A, 2019, 7, 14592-14601.	10.3	55
7	Unusual Loading-Dependent Sintering-Resistant Properties of Gold Nanoparticles Supported within Extra-large Mesopores. Chemistry of Materials, 2013, 25, 1556-1563.	6.7	54
8	Strong Metal–Support Interaction for 2D Materials: Application in Noble Metal/TiB ₂ Heterointerfaces and their Enhanced Catalytic Performance for Formic Acid Dehydrogenation. Advanced Materials, 2021, 33, e2101536.	21.0	47
9	Visible-Light Induced High-Yielding Benzyl Alcohol-to-Benzaldehyde Transformation over Mesoporous Crystalline TiO ₂ : A Self-Adjustable Photo-oxidation System with Controllable Hole-Generation. Journal of Physical Chemistry C, 2011, 115, 23408-23416.	3.1	46
10	Radical-Involved Photosynthesis of AuCN Oligomers from Au Nanoparticles and Acetonitrile. Journal of the American Chemical Society, 2012, 134, 18286-18294.	13.7	39
11	Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions. Chemical Communications, 2014, 50, 9679.	4.1	39
12	Interface engineering of palladium and zinc oxide nanorods with strong metal–support interactions for enhanced hydrogen production from base-free formaldehyde solution. Journal of Materials Chemistry A, 2019, 7, 8855-8864.	10.3	38
13	Visible-light-driven surface reconstruction of mesoporous TiO2: toward visible-light absorption and enhanced photocatalytic activities. Chemical Communications, 2011, 47, 8584.	4.1	35
14	Sub-10 nm Au–Pt–Pd alloy trimetallic nanoparticles with a high oxidation-resistant property as efficient and durable VOC oxidation catalysts. Chemical Communications, 2014, 50, 11713-11716.	4.1	35
15	The coupling of hemin with persistent free radicals induces a nonradical mechanism for oxidation of pollutants. Chemical Communications, 2016, 52, 9566-9569.	4.1	30
16	Elucidating the Strain–Vacancy–Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde. Small, 2021, 17, e2102970.	10.0	29
17	Ligand-regulated ORR activity of Au nanoparticles in alkaline medium: the importance of surface coverage of ligands. Catalysis Science and Technology, 2018, 8, 746-754.	4.1	28
18	Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming. ACS Applied Materials & 2019, 11, 33946-33954.	8.0	26

Renhong Li

#	Article	IF	CITATIONS
19	Cyanide Radical Chemisorbed Pt Electrocatalyst for Enhanced Methanol-Tolerant Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2016, 120, 11572-11580.	3.1	22
20	Ligand-mediated bifunctional catalysis for enhanced oxygen reduction and methanol oxidation tolerance in fuel cells. Journal of Materials Chemistry A, 2018, 6, 18884-18890.	10.3	22
21	<i>In situ</i> generated electron-deficient metallic copper as the catalytically active site for enhanced hydrogen production from alkaline formaldehyde solution. Catalysis Science and Technology, 2019, 9, 5292-5300.	4.1	21
22	Photo-assisted cyanation of transition metal nitrates coupled with room temperature C–C bond cleavage of acetonitrile. Chemical Communications, 2013, 49, 1906.	4.1	17
23	Solid phase metallurgy strategy to sub-5 nm Au–Pd and Ni–Pd bimetallic nanoparticles with controlled redox properties. Chemical Communications, 2014, 50, 213-215.	4.1	16
24	Boosting Hydrogen Evolution Activities by Strong Interfacial Electronic Interaction in ZnO@Bi(NO ₃) ₃ Core–Shell Structures. Journal of Physical Chemistry C, 2017, 121, 4343-4351.	3.1	16
25	All-solid-state magnesium oxide supported Group VIII and IB metal catalysts for selective catalytic reforming of aqueous aldehydes into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 10834-10843.	7.1	15
26	Oxygen-mediated water splitting on metal-free heterogeneous photocatalyst under visible light. Applied Catalysis B: Environmental, 2020, 279, 119378.	20.2	14
27	Ordered, extra-large mesopores with highly loaded gold nanoparticles: a new sintering- and coking-resistant catalyst system. Chemical Communications, 2013, 49, 7274.	4.1	13
28	Single component gold on protonated titanate nanotubes for surface-charge-mediated, additive-free dehydrogenation of formic acid into hydrogen. RSC Advances, 2016, 6, 100103-100107.	3.6	12
29	Gold nanoparticles confined in ordered mesopores: Size effect and enhanced stability during gas-phase selective oxidation of cyclohexanol. Catalysis Today, 2017, 298, 269-275.	4.4	11
30	Gold nanoparticle stabilization within tailored cubic mesoporous silica: Optimizing alcohol oxidation activity. Chinese Journal of Catalysis, 2017, 38, 545-553.	14.0	9
31	The interplay of Au nanoparticles and ZnO nanorods for oxygen-promoted, base-free, complete formaldehyde reforming into H2 and CO2. Catalysis Communications, 2018, 117, 5-8.	3.3	9
32	Magnetoswitchable controlled photocatalytic system using ferromagnetic FeO-doped titania nanorods photocatalysts with enhanced photoactivity. Separation and Purification Technology, 2009, 66, 171-176.	7.9	8
33	A new application of the traditional Fenton process to gold cyanide synthesis using acetonitrile as a cyanide source. RSC Advances, 2016, 6, 16448-16451.	3.6	7
34	Adsorption driven formate reforming into hydride and tandem hydrogenation of nitrophenol to amine over PdO _x catalysts. Catalysis Science and Technology, 2020, 10, 8332-8338.	4.1	7
35	A strong Jahn–Teller distortion in Mn ₃ O ₄ –MnO heterointerfaces for enhanced silver catalyzed formaldehyde reforming into hydrogen. Sustainable Energy and Fuels, 2022, 6, 3068-3077.	4.9	7
36	Dioxygen activation at room temperature during controllable and highly efficient acetaldehyde-to-acetic acid oxidation using a simple iron(III)–acetonitrile complex. Catalysis Today, 2014, 233, 140-146.	4.4	5

Renhong Li

#	Article	IF	CITATIONS
37	Tandem catalysis induced by hollow PdO: highly efficient H ₂ generation coupled with organic dye degradation <i>via</i> sodium formate reforming. Catalysis Science and Technology, 2018, 8, 6217-6227.	4.1	5
38	Boosting Electrocatalytic Hydrogen Evolution with Anodic Oxidative Upgrading of Formaldehyde over Trimetallic Carbides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7108-7116.	6.7	5
39	Carbon-catalyzed oxygen-mediated dehydrogenation of formaldehyde in alkaline solution for efficient hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 27877-27886.	7.1	5
40	The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Advances, 2016, 6, 88486-88489.	3.6	3
41	Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H ₂ production <i>via</i> aqueous formaldehyde reforming. Sustainable Energy and Fuels, 2021, 5, 4575-4579.	4.9	2
42	High Density Gold Nanoparticles Within Three-Dimensionally Mesoporous SBA-15: Adsorption Behavior and Optical Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 7060-7067.	0.9	1
43	Rationally tuning the active sites of copper-based catalysts towards formaldehyde reforming into hydrogen. Sustainable Energy and Fuels, 2021, 5, 6470-6477.	4.9	1
44	Novel Route to Erucamide: Highly Selective Synthesis from Acetonitrile at Room Temperature via a Photo-Fenton Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 11380-11385.	6.7	0