Philip G Browning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions. Science, 2009, 325, 52-58.	12.6	270
2	Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13982-13987.	7.1	195
3	Functional localization within the prefrontal cortex: missing the forest for the trees?. Trends in Neurosciences, 2010, 33, 533-540.	8.6	109
4	Neurotoxic Lesions of the Medial Mediodorsal Nucleus of the Thalamus Disrupt Reinforcer Devaluation Effects in Rhesus Monkeys. Journal of Neuroscience, 2007, 27, 11289-11295.	3.6	89
5	The role of prefrontal cortex in object-in-place learning in monkeys. European Journal of Neuroscience, 2005, 22, 3281-3291.	2.6	71
6	Behavioral Effect of Chemogenetic Inhibition Is Directly Related to Receptor Transduction Levels in Rhesus Monkeys. Journal of Neuroscience, 2018, 38, 7969-7975.	3.6	54
7	Frontal-Temporal Disconnection Abolishes Object Discrimination Learning Set in Macaque Monkeys. Cerebral Cortex, 2006, 17, 859-864.	2.9	50
8	Learning and Retrieval of Concurrently Presented Spatial Discrimination Tasks: Role of the Fornix Behavioral Neuroscience, 2004, 118, 138-149.	1.2	48
9	Severe Scene Learning Impairment, but Intact Recognition Memory, after Cholinergic Depletion of Inferotemporal Cortex Followed by Fornix Transection. Cerebral Cortex, 2010, 20, 282-293.	2.9	44
10	Acetylcholine Facilitates Recovery of Episodic Memory after Brain Damage. Journal of Neuroscience, 2012, 32, 13787-13795.	3.6	44
11	Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques. Cerebral Cortex, 2015, 25, 4519-4534.	2.9	44
12	Dissociable Roles for Cortical and Subcortical Structures in Memory Retrieval and Acquisition. Journal of Neuroscience, 2008, 28, 8387-8396.	3.6	36
13	Prefrontal Cortex Function in the Representation of Temporally Complex Events. Journal of Neuroscience, 2008, 28, 3934-3940.	3.6	32
14	Entorhinal cortex contributes to object-in-place scene memory. European Journal of Neuroscience, 2004, 20, 3157-3164.	2.6	24
15	Macro-connectomics and microstructure predict dynamic plasticity patterns in the non-human primate brain. ELife, 2018, 7, .	6.0	23
16	Impairment in object-in-place scene learning after uncinate fascicle section in macaque monkeys Behavioral Neuroscience, 2008, 122, 477-482.	1.2	19
17	Perseverative interference with object-in-place scene learning in rhesus monkeys with bilateral ablation of ventrolateral prefrontal cortex. Learning and Memory, 2008, 15, 126-132.	1.3	18
18	The Rhesus Monkey Hippocampus Critically Contributes to Scene Memory Retrieval, But Not New Learning. Journal of Neuroscience, 2018, 38, 7800-7808.	3.6	15

PHILIP G BROWNING

#	Article	IF	CITATIONS
19	Global retrograde amnesia but selective anterograde amnesia after frontal–temporal disconnection in monkeys. Neuropsychologia, 2008, 46, 2494-2502.	1.6	14
20	Two Wrongs Make a Right: Deficits in Reversal Learning after Orbitofrontal Damage Are Improved by Amygdala Ablation. Neuron, 2007, 54, 1-3.	8.1	10
21	Prefrontal-Temporal Disconnection Impairs Recognition Memory but Not Familiarity Discrimination. Journal of Neuroscience, 2013, 33, 9667-9674.	3.6	6
22	Reversal of Object Recognition Memory Deficit in Perirhinal Cortex-Lesioned Rats and Primates and in Rodent Models of Aging and Alzheimer's Diseases. Neuroscience, 2020, 448, 287-298.	2.3	4