## Fabienne Danhier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380015/publications.pdf Version: 2024-02-01



FARIENNE DANHIED

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents<br>glioblastoma recurrence after surgical resection. Journal of Controlled Release, 2019, 309, 72-81.                                  | 4.8 | 87        |
| 2  | Paclitaxel-loaded multifunctional nanoparticles for the targeted treatment of glioblastoma. Journal of Drug Targeting, 2019, 27, 614-623.                                                                                       | 2.1 | 41        |
| 3  | Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment.<br>Journal of Controlled Release, 2018, 281, 42-57.                                                                            | 4.8 | 147       |
| 4  | Post-resection treatment of glioblastoma with an injectable nanomedicine-loaded photopolymerizable<br>hydrogel induces long-term survival. International Journal of Pharmaceutics, 2018, 548, 522-529.                          | 2.6 | 52        |
| 5  | Magnetic targeting of paclitaxel-loaded poly(lactic- <em>co</em> -glycolic acid)-based<br>nanoparticles for the treatment of glioblastoma. International Journal of Nanomedicine, 2018,<br>Volume 13, 4509-4521.                | 3.3 | 73        |
| 6  | On glioblastoma and the search for a cure: where do we stand?. Cellular and Molecular Life Sciences, 2017, 74, 2451-2466.                                                                                                       | 2.4 | 56        |
| 7  | Novel model of orthotopic U-87 MG glioblastoma resection in athymic nude mice. Journal of<br>Neuroscience Methods, 2017, 284, 96-102.                                                                                           | 1.3 | 33        |
| 8  | Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. International Journal of Pharmaceutics, 2017, 532, 229-240.                         | 2.6 | 84        |
| 9  | Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures.<br>Expert Opinion on Drug Delivery, 2017, 14, 851-864.                                                                      | 2.4 | 261       |
| 10 | Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma.<br>Journal of Controlled Release, 2015, 210, 95-104.                                                                           | 4.8 | 89        |
| 11 | Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. International Journal of Pharmaceutics, 2015, 479, 399-407.                                                             | 2.6 | 56        |
| 12 | Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease<br>temozolomide resistance in glioblastoma: In vivo evaluation. International Journal of Pharmaceutics,<br>2015, 481, 154-161.         | 2.6 | 82        |
| 13 | Tumor Targeting by RGD-Grafted PLGA-Based Nanotheranostics Loaded with Paclitaxel and Superparamagnetic Iron Oxides. Methods in Pharmacology and Toxicology, 2015, , 1-17.                                                      | 0.1 | 1         |
| 14 | Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation.<br>Journal of Controlled Release, 2015, 198, 35-54.                                                                            | 4.8 | 95        |
| 15 | Vitamin E-based nanomedicines for anti-cancer drug delivery. Journal of Controlled Release, 2014, 182, 33-44.                                                                                                                   | 4.8 | 211       |
| 16 | Self-Assembling Doxorubicin–Tocopherol Succinate Prodrug as a New Drug Delivery System:<br>Synthesis, Characterization, and <i>in Vitro</i> and <i>in Vivo</i> Anticancer Activity. Bioconjugate<br>Chemistry, 2014, 25, 72-81. | 1.8 | 81        |
| 17 | Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. Journal of Controlled Release, 2014, 194, 82-91.                          | 4.8 | 194       |
| 18 | Vitamin E-based micelles enhance the anticancer activity of doxorubicin. International Journal of<br>Pharmaceutics, 2014, 476, 9-15.                                                                                            | 2.6 | 37        |

FABIENNE DANHIER

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nanosuspension for the delivery of a poorly soluble anti-cancer kinase inhibitor. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2014, 88, 252-260.                                 | 2.0 | 20        |
| 20 | In Vitro Investigations of Smart Drug Delivery Systems Based on Redoxâ€ <scp>S</scp> ensitive<br>Crossâ€ <scp>L</scp> inked Micelles. Macromolecular Bioscience, 2013, 13, 1661-1670.           | 2.1 | 24        |
| 21 | Potentiation of radiotherapy by a localized antiangiogenic gene therapy. Radiotherapy and Oncology, 2013, 107, 252-258.                                                                         | 0.3 | 13        |
| 22 | Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. International Journal of Pharmaceutics, 2013, 447, 94-101. | 2.6 | 196       |
| 23 | Targeting of Tumor Endothelium by RGD-Grafted PLGA-Nanoparticles. Methods in Enzymology, 2012, 508, 157-175.                                                                                    | 0.4 | 46        |
| 24 | RGD-Based Strategies To Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis. Molecular<br>Pharmaceutics, 2012, 9, 2961-2973.                                                       | 2.3 | 785       |
| 25 | PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 2012, 161, 505-522.                                                                            | 4.8 | 2,692     |
| 26 | Electron Paramagnetic Resonance Highlights That the Oxygen Effect Contributes to the Radiosensitizing Effect of Paclitaxel. PLoS ONE, 2012, 7, e40772.                                          | 1.1 | 21        |
| 27 | Fluorescent Labeling of Degradable Poly(Lactide-Co-Glycolide) for Cellular Nanoparticles Tracking in<br>Living Cells. International Journal of Artificial Organs, 2011, 34, 152-160.            | 0.7 | 24        |
| 28 | To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010, 148, 135-146.                     | 4.8 | 2,256     |
| 29 | Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor,<br>JNJ-7706621. International Journal of Pharmaceutics, 2010, 392, 20-28.                       | 2.6 | 46        |
| 30 | Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of<br>Controlled Release, 2009, 133, 11-17.                                                      | 4.8 | 526       |
| 31 | Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. Journal of<br>Controlled Release, 2009, 140, 166-173.                                                  | 4.8 | 313       |
| 32 | Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for<br>Paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 230-238.  | 2.0 | 57        |