Shunsuke Yaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6379967/publications.pdf Version: 2024-02-01

SHUNSLIKE VACUCHI

#	Article	lF	CITATIONS
1	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
2	A genomic view of the sea urchin nervous system. Developmental Biology, 2006, 300, 434-460.	2.0	260
3	The Conserved Rieske Oxygenase DAF-36/Neverland Is a Novel Cholesterol-metabolizing Enzyme. Journal of Biological Chemistry, 2011, 286, 25756-25762.	3.4	144
4	A Wnt-FoxQ2-Nodal Pathway Links Primary and Secondary Axis Specification in Sea Urchin Embryos. Developmental Cell, 2008, 14, 97-107.	7.0	125
5	The evolution of nervous system patterning: insights from sea urchin development. Development (Cambridge), 2011, 138, 3613-3623.	2.5	102
6	The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development (Cambridge), 2009, 136, 1179-1189.	2.5	100
7	Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Development (Cambridge), 2006, 133, 2337-2346.	2.5	87
8	Expression oftryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior. Journal of Comparative Neurology, 2003, 466, 219-229.	1.6	85
9	A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biology, 2007, 8, R85.	9.6	84
10	Neuron-specific expression of a synaptotagmin gene in the sea urchinStrongylocentrotus purpuratus. Journal of Comparative Neurology, 2006, 496, 244-251.	1.6	76
11	TGFÎ ² signaling positions the ciliary band and patterns neurons in the sea urchin embryo. Developmental Biology, 2010, 347, 71-81.	2.0	75
12	Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo. Developmental Biology, 2007, 302, 494-503.	2.0	46
13	The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mechanisms of Development, 2004, 121, 325-337.	1.7	42
14	HpBase: A genome database of a sea urchin, <i>Hemicentrotus pulcherrimus</i> . Development Growth and Differentiation, 2018, 60, 174-182.	1.5	39
15	Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos. Development Growth and Differentiation, 2000, 42, 479-488.	1.5	37
16	Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development (Cambridge), 2011, 138, 4233-4243.	2.5	37
17	Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. PLoS Genetics, 2016, 12, e1006001.	3.5	36
18	ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. Developmental Biology, 2010, 348, 67-75.	2.0	35

Shunsuke Yaguchi

#	Article	IF	CITATIONS
19	Development of a dopaminergic system in sea urchin embryos and larvae. Journal of Experimental Biology, 2010, 213, 2808-2819.	1.7	33
20	Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Developmental Biology, 2012, 363, 74-83.	2.0	33
21	Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel. Journal of Experimental Biology, 2007, 210, 403-412.	1.7	28
22	Establishment of homozygous knock-out sea urchins. Current Biology, 2020, 30, R427-R429.	3.9	24
23	Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin <i>HemicentrotusApulcherrimus</i> during early development, and its potential role in larval vertical migration. Development Growth and Differentiation, 2010, 52, 195-207.	1.5	22
24	Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. Journal of Comparative Neurology, 2021, 529, 1135-1156.	1.6	18
25	Sea urchin larvae utilize light for regulating the pyloric opening. BMC Biology, 2021, 19, 64.	3.8	17
26	Evolution of nitric oxide regulation of gut function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5607-5612.	7.1	16
27	Troponin-I is present as an essential component of muscles in echinoderm larvae. Scientific Reports, 2017, 7, 43563.	3.3	12
28	Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos. Scientific Reports, 2017, 7, 10751.	3.3	12
29	Planktonic sea urchin larvae change their swimming direction in response to strong photoirradiation. PLoS Genetics, 2022, 18, e1010033.	3.5	11
30	The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development (Cambridge), 2009, 136, 1583-1583.	2.5	9
31	Early development and neurogenesis of <i>Temnopleurus reevesii</i> . Development Growth and Differentiation, 2015, 57, 242-250.	1.5	9
32	Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos. Cytoskeleton, 2013, 70, 453-470.	2.0	7
33	Bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo. Scientific Reports, 2015, 4, 6852.	3.3	7
34	Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus. Developmental Biology, 2018, 444, 1-8.	2.0	7
35	<scp>Transforming growth factor</scp> â€î² signal regulates gut bending in the sea urchin embryo. Development Growth and Differentiation, 2018, 60, 216-225.	1.5	7
36	Whole mount in situ hybridization techniques for analysis of the spatial distribution of mRNAs in sea urchin embryos and early larvae. Methods in Cell Biology, 2019, 151, 177-196.	1.1	7

Shunsuke Yaguchi

#	Article	IF	CITATIONS
37	Imaging Neural Development in Embryonic and Larval Sea Urchins. Methods in Molecular Biology, 2014, 1128, 147-160.	0.9	6
38	<i>Temnopleurus reevesii</i> as a new sea urchin model in genetics. Development Growth and Differentiation, 2022, 64, 59-66.	1.5	5
39	<scp>TrBase</scp> : A genome and transcriptome database of <i>Temnopleurus reevesii</i> . Development Growth and Differentiation, 2022, 64, 210-218.	1.5	5
40	Embryonic expression of engrailed in sea urchins. Gene Expression Patterns, 2006, 6, 566-571.	0.8	4
41	Temnopleurus as an emerging echinoderm model. Methods in Cell Biology, 2019, 150, 71-79.	1.1	4
42	Excision and Transposition Activity of Tc1/ <i>mariner</i> Superfamily Transposons in Sea Urchin Embryos. Zoological Science, 2010, 27, 256-262.	0.7	3
43	Human disease-associated extracellular matrix orthologs ECM3 and QBRICK regulate primary mesenchymal cell migration in sea urchin embryos. Experimental Animals, 2021, 70, 378-386.	1.1	3
44	<i>cis</i> â€Regulatory analysis for later phase of anterior neuroectodermâ€specific <i>foxQ2</i> expression in sea urchin embryos. Genesis, 2019, 57, e23302.	1.6	2
45	Echinoderms. , 2021, , 335-339.		2
46	Direct TGF â€ÃŸ signaling via alk4/5/7 pathway is involved in gut bending in sea urchin embryos. Developmental Dynamics, 2021, , .	1.8	1
47	Lynne M. Angerer: An originator of RNA in situ hybridization. Molecular Reproduction and Development, 2013, 80, Fm i.	2.0	Ο
48	Analysis of neural activity with fluorescent protein biosensors. Methods in Cell Biology, 2019, 151, 519-526.	1.1	0
49	Usage of the Sea Urchin Hemicentrotus pulcherrimus Database, HpBase. Methods in Molecular Biology, 2021, 2219, 267-275.	0.9	Ο
50	Marine genomics, transcriptomics, and beyond in developmental, cell, and evolutionary biology. Development Growth and Differentiation, 2022, 64, 196-197.	1.5	0