List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6379589/publications.pdf Version: 2024-02-01

ABDIIL MAILD MAZMAZ

#	Article	IF	CITATIONS
1	Partial Differential Equations and Solitary Waves Theory. Nonlinear Physical Science, 2009, , .	0.2	608
2	A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, 1999, 102, 77-86.	1.4	493
3	The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation, 2004, 154, 713-723.	1.4	457
4	A new algorithm for calculating adomian polynomials for nonlinear operators. Applied Mathematics and Computation, 2000, 111, 33-51.	1.4	450
5	Linear and Nonlinear Integral Equations. , 2011, , .		338
6	A new algorithm for solving differential equations of Lane–Emden type. Applied Mathematics and Computation, 2001, 118, 287-310.	1.4	305
7	The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Applied Mathematics and Computation, 2007, 184, 1002-1014.	1.4	239
8	A new modification of the Adomian decomposition method for linear and nonlinear operators. Applied Mathematics and Computation, 2001, 122, 393-405.	1.4	238
9	The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos, Solitons and Fractals, 2005, 25, 55-63.	2.5	238
10	Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh–coth method. Applied Mathematics and Computation, 2007, 190, 633-640.	1.4	237
11	New solitons and kink solutions for the Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1395-1404.	1.7	232
12	The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations. Applied Mathematics and Computation, 2007, 188, 1467-1475.	1.4	222
13	A new method for solving singular initial value problems in the second-order ordinary differential equations. Applied Mathematics and Computation, 2002, 128, 45-57.	1.4	220
14	Adomian decomposition method for a reliable treatment of the Bratu-type equations. Applied Mathematics and Computation, 2005, 166, 652-663.	1.4	209
15	The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Applied Mathematics and Computation, 2007, 187, 1131-1142.	1.4	193
16	The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Applied Mathematics and Computation, 2005, 167, 1196-1210.	1.4	185
17	Solving the \$\$mathbf{(3+1) }\$\$ (3 + 1) -dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota's method. Nonlinear Dynamics, 2017, 88, 3017-3021.	2.7	178
18	A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos, Solitons and Fractals, 2008, 37, 1136-1142.	2.5	175

#	Article	IF	CITATIONS
19	Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Applied Mathematics and Computation, 2005, 161, 543-560.	1.4	173
20	Analytical approximations and Padé approximants for Volterra's population model. Applied Mathematics and Computation, 1999, 100, 13-25.	1.4	156
21	The tanh and the sine–cosine methods for a reliable treatment of the modified equal width equation and its variants. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 148-160.	1.7	155
22	Multiple-soliton solutions for the Boussinesq equation. Applied Mathematics and Computation, 2007, 192, 479-486.	1.4	150
23	A comparison between the variational iteration method and Adomian decomposition method. Journal of Computational and Applied Mathematics, 2007, 207, 129-136.	1.1	149
24	The combined Laplace transform–Adomian decomposition method for handling nonlinear Volterra integro–differential equations. Applied Mathematics and Computation, 2010, 216, 1304-1309.	1.4	145
25	New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dynamics, 2021, 104, 1581-1594.	2.7	142
26	The modified decomposition method and Padé approximants for solving the Thomas–Fermi equation. Applied Mathematics and Computation, 1999, 105, 11-19.	1.4	141
27	The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves. Applied Mathematics and Computation, 2008, 201, 489-503.	1.4	138
28	The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1039-1047.	1.7	138
29	The sine–cosine method for obtaining solutions with compact and noncompact structures. Applied Mathematics and Computation, 2004, 159, 559-576.	1.4	137
30	New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 889-901.	1.7	135
31	The modified decomposition method for analytic treatment of differential equations. Applied Mathematics and Computation, 2006, 173, 165-176.	1.4	131
32	The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations. Applied Mathematics and Computation, 2005, 169, 321-338.	1.4	130
33	Multiple-soliton solutions for extended <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><ml:mn> limboâ€"Miwa equations. Applied Mathematics Letters. 2017. 64. 21-26.</ml:mn></mml:mrow></mml:math 	1 <td>130 1n><mml:m< td=""></mml:m<></td>	130 1n> <mml:m< td=""></mml:m<>
34	The tanh and the sine–cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon equation. Applied Mathematics and Computation, 2005, 167, 1179-1195.	1.4	129
35	The extended tanh method for new compact and noncompact solutions for the KP–BBM and the ZK–BBM equations. Chaos, Solitons and Fractals, 2008, 38, 1505-1516.	2.5	129
36	Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Applied Mathematics and Computation, 2007, 190, 1198-1206.	1.4	128

#	Article	IF	CITATIONS
37	Bright and dark soliton solutions for a equation with t-dependent coefficients. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2162-2165.	0.9	123
38	Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations. Applied Mathematics and Computation, 2008, 203, 592-597.	1.4	122
39	Solitary wave solutions for modified forms of Degasperis–Procesi and Camassa–Holm equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 500-504.	0.9	121
40	The Hirota's direct method and the tanh–coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Applied Mathematics and Computation, 2008, 199, 133-138.	1.4	121
41	overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.1	119
42	A general bilinear form to generate different wave structures of solitons for a (3+1)â€dimensional Boitiâ€Leonâ€Mannaâ€Pempinelli equation. Mathematical Methods in the Applied Sciences, 2019, 42, 6277-6283	.1.2	119
43	A comparison between Adomian decomposition method and Taylor series method in the series solutions. Applied Mathematics and Computation, 1998, 97, 37-44.	1.4	108
44	An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients. Applied Mathematics and Computation, 2018, 321, 282-289.	1.4	107
45	A computational approach to soliton solutions of the Kadomtsev–Petviashvili equation. Applied Mathematics and Computation, 2001, 123, 205-217.	1.4	106
46	Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations. Chaos, Solitons and Fractals, 2006, 28, 1005-1013.	2.5	105
47	The variational iteration method for solving linear and nonlinear systems of PDEs. Computers and Mathematics With Applications, 2007, 54, 895-902.	1.4	105
48	The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model. Applied Mathematics and Computation, 2000, 110, 251-264.	1.4	103
49	New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dynamics, 2019, 97, 83-94.	2.7	102
50	The numerical solution of sixth-order boundary value problems by the modified decomposition method. Applied Mathematics and Computation, 2001, 118, 311-325.	1.4	101
51	New solitary wave solutions to the modified forms of Degasperis–Procesi and Camassa–Holm equations. Applied Mathematics and Computation, 2007, 186, 130-141.	1.4	100
52	Optical soliton solutions to the generalized nonautonomous nonlinear SchrĶdinger equations in optical fibers via the sine-Gordon expansion method. Optik, 2020, 208, 164132.	1.4	100
53	Dynamical analysis of lump solutions for (3 + 1) dimensional generalized KP–Boussinesq equation and Its dimensionally reduced equations. Physica Scripta, 2018, 93, 075203.	1.2	99
54	Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connection Science, 2015, 27, 377-396.	1.8	96

#	Article	IF	CITATIONS
55	A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dynamics, 2016, 84, 1107-1112.	2.7	96
56	The numerical solution of fifth-order boundary value problems by the decomposition method. Journal of Computational and Applied Mathematics, 2001, 136, 259-270.	1.1	95
57	The variational iteration method for solving two forms of Blasius equation on a half-infinite domain. Applied Mathematics and Computation, 2007, 188, 485-491.	1.4	95
58	Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2014, 52, 255-267.	0.7	95
59	Bright – dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik, 2019, 179, 479-484.	1.4	95
60	The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 584-592.	1.7	93
61	Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 491-495.	1.7	93
62	A new integrable (\$\$3+1\$\$ 3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dynamics, 2016, 83, 1529-1534.	2.7	93
63	The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Computers and Mathematics With Applications, 2007, 54, 926-932.	1.4	92
64	The tanh method and the sine–cosine method for solving the KP-MEW equation. International Journal of Computer Mathematics, 2005, 82, 235-246.	1.0	91
65	Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dynamics, 2016, 83, 591-596.	2.7	91
66	Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dynamics, 2018, 94, 2469-2477.	2.7	91
67	Exact solutions with solitons and periodic structures for the Zakharov–Kuznetsov (ZK) equation and its modified form. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 597-606.	1.7	89
68	A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear SchrĶdinger equation with variable coefficients in nonlinear optical fibers. Optik, 2019, 180, 917-923.	1.4	89
69	A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results in Physics, 2021, 23, 104043.	2.0	89
70	A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Mathematics and Computers in Simulation, 2021, 187, 505-519.	2.4	88
71	Distinct variants of the KdV equation with compact and noncompact structures. Applied Mathematics and Computation, 2004, 150, 365-377.	1.4	87
72	A reliable treatment for mixed Volterra–Fredholm integral equations. Applied Mathematics and Computation, 2002, 127, 405-414.	1.4	86

#	Article	IF	CITATIONS
73	Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms. Optik, 2019, 181, 503-513.	1.4	86
74	Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations. Physica Scripta, 2020, 95, 095204.	1.2	86
75	New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. European Physical Journal Plus, 2020, 135, 1.	1.2	86
76	A reliable algorithm for solving boundary value problems for higher-order integro-differential equations. Applied Mathematics and Computation, 2001, 118, 327-342.	1.4	85
77	Combined optical solitary waves of the Fokas—Lenells equation. Waves in Random and Complex Media, 2017, 27, 587-593.	1.6	85
78	Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dynamics, 2017, 87, 1685-1691.	2.7	82
79	Adomian decomposition method for solving the Volterra integral form of the Lane–Emden equations with initial values and boundary conditions. Applied Mathematics and Computation, 2013, 219, 5004-5019.	1.4	81
80	New solitons and kinks solutions to the Sharma–Tasso–Olver equation. Applied Mathematics and Computation, 2007, 188, 1205-1213.	1.4	80
81	The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3881-3886.	1.7	80
82	Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dynamics, 2016, 85, 731-737.	2.7	80
83	General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n,n) equations in higher dimensional spaces. Applied Mathematics and Computation, 2002, 133, 229-244.	1.4	79
84	New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. Applied Mathematics and Computation, 2006, 182, 1642-1650.	1.4	78
85	Multiple-front solutions for the Burgers–Kadomtsev–Petviashvili equation. Applied Mathematics and Computation, 2008, 200, 437-443.	1.4	78
86	Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 569-579.	1.6	78
87	Solitons and singular solitons for the Gardner–KP equation. Applied Mathematics and Computation, 2008, 204, 162-169.	1.4	77
88	Travelling wave solutions of generalized forms of Burgers, Burgers–KdV and Burgers–Huxley equations. Applied Mathematics and Computation, 2005, 169, 639-656.	1.4	76
89	The variational iteration method for analytic treatment for linear and nonlinear ODEs. Applied Mathematics and Computation, 2009, 212, 120-134.	1.4	76
90	Necessary conditions for the appearance of noise terms in decomposition solution series. Applied Mathematics and Computation, 1997, 81, 265-274.	1.4	75

#	Article	IF	CITATIONS
91	The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations. Computers and Mathematics With Applications, 2007, 54, 933-939.	1.4	75
92	General compactons solutions for the focusing branch of the nonlinear dispersive K(n,n) equations in higher-dimensional spaces. Applied Mathematics and Computation, 2002, 133, 213-227.	1.4	74
93	The Hirota's bilinear method and the tanh–coth method for multiple-soliton solutions of the Sawada–Kotera–Kadomtsev–Petviashvili equation. Applied Mathematics and Computation, 2008, 200, 160-166.	1.4	74
94	New (3 \$\$varvec{+}\$\$ + 1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dynamics, 2017, 87, 2457-2461.	2.7	73
95	Analytic treatment for variable coefficient fourth-order parabolic partial differential equations. Applied Mathematics and Computation, 2001, 123, 219-227.	1.4	72
96	Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. Chaos, Solitons and Fractals, 2006, 28, 454-462.	2.5	72
97	The tanh–coth and the sech methods for exact solutions of the Jaulent–Miodek equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 85-90.	0.9	72
98	New solitons and periodic wave solutions for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Journal of Electromagnetic Waves and Applications, 2016, 30, 788-794.	1.0	72
99	Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method. Applied Mathematics and Computation, 2005, 166, 638-651.	1.4	71
100	Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Applied Mathematics and Computation, 2008, 195, 754-761.	1.4	70
101	Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dynamics, 2017, 89, 1727-1732.	2.7	70
102	Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dynamics, 2018, 94, 2655-2663.	2.7	70
103	The modified decomposition method and Pad \tilde{A} © approximants for a boundary layer equation in unbounded domain. Applied Mathematics and Computation, 2006, 177, 737-744.	1.4	69
104	Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV–Sine-Gordon equation. Nonlinear Dynamics, 2019, 95, 2209-2215.	2.7	69
105	Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh–coth method and Exp-function method. Applied Mathematics and Computation, 2008, 202, 275-286.	1.4	67
106	A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions. Applied Mathematical Modelling, 2013, 37, 8687-8708.	2.2	67
107	Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations. Chaos, Solitons and Fractals, 2006, 28, 127-135.	2.5	66
108	Multiple-soliton solutions for the Lax–Kadomtsev–Petviashvili (Lax–KP) equation. Applied Mathematics and Computation, 2008, 201, 168-174.	1.4	66

#	Article	IF	CITATIONS
109	A two-mode modified KdV equation with multiple soliton solutions. Applied Mathematics Letters, 2017, 70, 1-6.	1.5	65
110	Bright and dark optical solitons for (2+1)-dimensional SchrĶdinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik, 2019, 192, 162948.	1.4	65
111	New \$\$(3+1)\$\$-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dynamics, 2021, 106, 891-897.	2.7	65
112	Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities. Mathematical and Computer Modelling, 2006, 43, 802-808.	2.0	63
113	Exact Soliton and Kink Solutions for New (3+1)-Dimensional Nonlinear Modified Equations of Wave Propagation. Open Engineering, 2017, 7, 169-174.	0.7	63
114	Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Computers and Mathematics With Applications, 2018, 76, 276-283.	1.4	63
115	Optical envelope soliton solutions for coupled nonlinear SchrĶdinger equations applicable to high birefringence fibers. Optik, 2022, 255, 168673.	1.4	63
116	New solitary wave solutions to the modified Kawahara equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 360, 588-592.	0.9	62
117	The tanh–coth and the sine–cosine methods for kinks, solitons, and periodic solutions for the Pochhammer–Chree equations. Applied Mathematics and Computation, 2008, 195, 24-33.	1.4	61
118	Multiple-soliton solutions of two extended model equations for shallow water waves. Applied Mathematics and Computation, 2008, 201, 790-799.	1.4	61
119	Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity. Mathematical and Computer Modelling, 2006, 43, 178-184.	2.0	60
120	Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation. Applied Mathematics and Computation, 2009, 214, 370-373.	1.4	60
121	Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. International Journal of Non-Linear Mechanics, 2013, 49, 159-169.	1.4	60
122	Exact solutions to nonlinear diffusion equations obtained by the decomposition method. Applied Mathematics and Computation, 2001, 123, 109-122.	1.4	59
123	Nonlinear variants of the BBM equation with compact and noncompact physical structures. Chaos, Solitons and Fractals, 2005, 26, 767-776.	2.5	59
124	New solutions of distinct physical structures to high-dimensional nonlinear evolution equations. Applied Mathematics and Computation, 2008, 196, 363-370.	1.4	59
125	General higha€ order breathers and rogue waves in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:m KPâ€"Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 2018, 64,</mml:m </mml:mrow></mml:math 	ın>1 ≰/7 nml:	mn59mml:n1c
126	An analytic study of compactons structures in a class of nonlinear dispersive equations. Mathematics and Computers in Simulation, 2003, 63, 35-44.	2.4	57

#	Article	IF	CITATIONS
127	The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 367-370.	0.9	57
128	Optical solitons for nonlinear SchrĶdinger (NLS) equation in normal dispersive regimes. Optik, 2019, 184, 428-435.	1.4	57
129	New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations. Chaos, Solitons and Fractals, 2004, 22, 249-260.	2.5	56
130	Exact solutions of compact and noncompact structures for the KP–BBM equation. Applied Mathematics and Computation, 2005, 169, 700-712.	1.4	56
131	Exact and explicit travelling wave solutions for the nonlinear Drinfeld–Sokolov system. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 311-325.	1.7	56
132	Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations. Physica Scripta, 2010, 81, 035005.	1.2	56
133	Travelling wave solutions for combined and double combined sine–cosine-Gordon equations by the variable separated ODE method. Applied Mathematics and Computation, 2006, 177, 755-760.	1.4	55
134	An algorithm based on the variational iteration technique for the Bratu-type and the Lane–Emden problems. Journal of Mathematical Chemistry, 2016, 54, 527-551.	0.7	55
135	Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dynamics, 2018, 91, 877-883.	2.7	55
136	Optical bright and dark soliton solutions for coupled nonlinear SchrĶdinger (CNLS) equations by the variational iteration method. Optik, 2020, 207, 164457.	1.4	55
137	Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations. Symmetry, 2022, 14, 597.	1.1	55
138	The variational iteration method for exact solutions of Laplace equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 363, 260-262.	0.9	54
139	Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. Applied Mathematics and Computation, 2006, 182, 283-300.	1.4	53
140	New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 331-339.	1.7	53
141	Two wave mode higher-order modified KdV equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2223-2230.	1.6	53
142	Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dynamics, 2020, 101, 581-595.	2.7	53
143	Einstein's vacuum field equation: Painlev \tilde{A} analysis and Lie symmetries. Waves in Random and Complex Media, 2021, 31, 199-206.	1.6	53
144	A reliable technique for solving the wave equation in an infinite one-dimensional medium. Applied Mathematics and Computation, 1998, 92, 1-7.	1.4	52

#	Article	IF	CITATIONS
145	Two B-type Kadomtsev–Petviashvili equations of (2+1) and (3+1) dimensions: Multiple soliton solutions, rational solutions and periodic solutions. Computers and Fluids, 2013, 86, 357-362.	1.3	52
146	Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients. Nuclear Physics B, 2020, 954, 115009.	0.9	52
147	The Modified Adomian Decomposition Method for Solving Linear and Nonlinear Boundary Value Problems of Tenth-order and Twelfth-order. International Journal of Nonlinear Sciences and Numerical Simulation, 2000, 1, .	0.4	51
148	A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations. Applied Mathematics and Computation, 2006, 181, 1703-1712.	1.4	51
149	Solitary wave solutions for a generalized KdV–mKdV equation with variable coefficients. Mathematics and Computers in Simulation, 2010, 80, 1867-1873.	2.4	51
150	Multiple soliton solutions for the ()-dimensional asymmetric Nizhnik–Novikov–Veselov equation. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 1314-1318.	0.6	51
151	A new numerical approach to solve Thomas–Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus, 2016, 5, 1400.	1.2	51
152	The Numerical Solution of Special Fourth-Order Boundary Value Problems by the Modified Decomposition Method. International Journal of Computer Mathematics, 2002, 79, 345-356.	1.0	50
153	Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers equations. Applied Mathematics and Computation, 2008, 204, 817-823.	1.4	50
154	Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik, 2022, 251, 168334.	1.4	50
155	Multiple kink solutions and multiple singular kink solutions for -dimensional nonlinear models generated by the Jaulent–Miodek hierarchy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1844-1846.	0.9	49
156	New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions. Chaos, Solitons and Fractals, 2015, 76, 93-97.	2.5	49
157	Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Applied Mathematics and Computation, 2019, 361, 325-331.	1.4	49
158	Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dynamics, 2020, 100, 3711-3716.	2.7	49
159	Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik, 2022, 266, 169617.	1.4	49
160	A class of nonlinear fourth order variant of a generalized Camassa–Holm equation with compact and noncompact solutions. Applied Mathematics and Computation, 2005, 165, 485-501.	1.4	48
161	Solitons and periodic solutions for the fifth-order KdV equation. Applied Mathematics Letters, 2006, 19, 1162-1167.	1.5	48
162	Compact and noncompact physical structures for the ZK–BBM equation. Applied Mathematics and Computation, 2005, 169, 713-725.	1.4	47

 Exact solutions for the ZK-MEW equation by using the tanh and sine–cosine meth Journal of Computer Mathematics, 2005, 82, 699-708. The (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Mu 	ltiple Singular	1.0	47
The (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Mu	ltiple Singular nces, 2010, 65,		
164 Soliton Solutions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Scier 173-181.		0.7	47
Multiple soliton solutions for (2 + 1)-dimensional Sawada-Kotera and Caudrey-Dodd- Mathematical Methods in the Applied Sciences, 2011, 34, 1580-1586.	Gibbon equations.	1.2	47
166 Two forms of (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation: multipl Physica Scripta, 2012, 86, 035007.	e soliton solutions.	1.2	47
167 The simplified Hirota's method for studying three extended higher-order KdV-typ of Ocean Engineering and Science, 2016, 1, 181-185.	e equations. Journal	1.7	47
168 Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst variational iteration method. Chemical Physics Letters, 2017, 679, 132-136.	by the	1.2	47
169 Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in flui Letters, Section A: General, Atomic and Solid State Physics, 2021, 413, 127585.	ds. Physics	0.9	47
The sine–cosine and the tanh methods: Reliable tools for analytic treatment of non- equations. Applied Mathematics and Computation, 2006, 173, 150-164.	nlinear dispersive	1.4	46
¹⁷¹ Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation. Applie and Computation, 2008, 204, 20-26.	d Mathematics	1.4	46
A study on the systems of the Volterra integral forms of the Lane–Emden equation decomposition method. Mathematical Methods in the Applied Sciences, 2014, 37, 1		1.2	46
Bright and dark optical solitons for (3+1)-dimensional Schrödinger equation with cubic–quintic-septic nonlinearities. Optik, 2021, 225, 165752.	:	1.4	46
174 New kinks and solitons solutions to the (2+1) -dimensional Konopelchenko–Dubro Mathematical and Computer Modelling, 2007, 45, 473-479.	ovsky equation.	2.0	45
¹⁷⁵ The integrable Vakhnenko–Parkes (VP) and the modified Vakhnenko–Parkes (M real and complex soliton solutions. Chinese Journal of Physics, 2019, 57, 375-381.	VP) equations: Multiple	2.0	45
176 The decomposition method for approximate solution of the Goursat problem. Applie Computation, 1995, 69, 299-311.	d Mathematics and	1.4	44
New travelling wave solutions of different physical structures to generalized BBM eq Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 358-362.	uation. Physics	0.9	44
 Neuro-heuristic computational intelligence for solving nonlinear pantograph systems Information Technology and Electronic Engineering, 2017, 18, 464-484. 	s. Frontiers of	1.5	44
Integrability aspects and localized wave solutions for a new \$\$mathbf (4+1) \$\$-dime Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dynamics, 2019, 98, 1379		2.7	44

Characteristics of integrability, bidirectional solitons and localized solutions for a (\$\$11\$3+1) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	CITATIONS
181	Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration method. Optik, 2019, 180, 414-418.	1.4	44
182	Optical solitons for perturbed Gerdjikov–Ivanov equation. Optik, 2018, 174, 447-451.	1.4	43
183	Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2962-2970.	1.7	42
184	<i>N</i> -soliton solutions for the Vakhnenko equation and its generalized forms. Physica Scripta, 2010, 82, 065006.	1.2	42
185	Multi-front waves for extended form of modified Kadomtsev-Petviashvili equation. Applied Mathematics and Mechanics (English Edition), 2011, 32, 875-880.	1.9	42
186	A study on a twoâ€wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Mathematical Methods in the Applied Sciences, 2017, 40, 4128-4133.	1.2	42
187	Some applications of the (G′/G, 1/G)-expansion method to find new exact solutions of NLEEs. European Physical Journal Plus, 2017, 132, 1.	1.2	42
188	Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation. Optik, 2018, 172, 622-627.	1.4	42
189	Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations. Applied Mathematics Letters, 2019, 88, 1-7.	1.5	42
190	A study on nonlinear dispersive partial differential equations of compact and noncompact solutions. Applied Mathematics and Computation, 2003, 135, 399-409.	1.4	41
191	Multiple-soliton solutions for the generalized -dimensional and the generalized -dimensional Ito equations. Applied Mathematics and Computation, 2008, 202, 840-849.	1.4	41
192	Group invariant solutions of (3+1)-dimensional generalized B-type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 065204.	1.2	41
193	The existence of noise terms for systems of inhomogeneous differential and integral equations. Applied Mathematics and Computation, 2003, 146, 81-92.	1.4	40
194	The tanh–coth method for new compactons and solitons solutions for the K(n,n) and the K(n+1,n+1) equations. Applied Mathematics and Computation, 2007, 188, 1930-1940.	1.4	40
195	The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions. Applied Mathematics and Computation, 2008, 204, 963-972.	1.4	40
196	Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1466-1472.	1.7	40
197	Kadomtsev–Petviashvili hierarchy: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>N</mml:mi></mml:math> -soliton solutions and distinct dispersion relations. Applied Mathematics Letters, 2016, 52, 74-79.	1.5	40
198	Families of semi-rational solutions to the Kadomtsev–Petviashvili I equation. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 480-491.	1.7	40

#	Article	IF	CITATIONS
199	The integrable time-dependent sine-Gordon equation with multiple optical kink solutions. Optik, 2019, 182, 605-610.	1.4	40
200	A (2+1)-dimensional time-dependent Date–Jimbo–Kashiwara–Miwa equation: Painlevé integrability and multiple soliton solutions. Computers and Mathematics With Applications, 2020, 79, 1145-1149.	1.4 xmlns:mr	40 nl="http://ww
201	SchrĶdinger-type models and their traveling wave solutions. Chaos. Solitons and Fractals. 2021. 150.	2.5	40
202	THE MARKET THE ADDATES THE ADDATES THE ADDATES AND ADD	1.4	39
203	A study on KdV and Gardner equations with time-dependent coefficients and forcing terms. Applied Mathematics and Computation, 2010, 217, 2277-2281.	1.4	39
204	Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Engineering, 2012, 53, 1-5.	1.9	39
205	Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation. European Physical Journal Plus, 2021, 136, 1.	1.2	39
206	Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dynamics, 2022, 109, 1929-1934.	2.7	39
207	A new approach to the nonlinear advection problem: An application of the decomposition method. Applied Mathematics and Computation, 1995, 72, 175-181.	1.4	38
208	Solutions of compact and noncompact structures for nonlinear Klein–Gordon-type equation. Applied Mathematics and Computation, 2003, 134, 487-500.	1.4	38
209	Analytic study on nonlinear variants of the RLW and the PHI-four equations. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 314-327.	1.7	38
210	Solitons collision and freak waves in a plasma with Cairns-Tsallis particle distributions. Plasma Physics and Controlled Fusion, 2015, 57, 125012.	0.9	38
211	Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation. Optik, 2021, 241, 166985.	1.4	38
212	A new generalized fifth-order nonlinear integrable equation. Physica Scripta, 2011, 83, 035003.	1.2	37
213	Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Engineering, 2015, 94, 111-115.	1.9	37
214	An extended modified KdV equation and its Painlevé integrability. Nonlinear Dynamics, 2016, 86, 1455-1460.	2.7	37
215	Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma–Tasso–Olver equations. Chinese Journal of Physics, 2019, 59, 372-378.	2.0	37
216	Transformation of soliton states for a (2+1) dimensional fourth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Laser Physics, 2019, 29, 035401.	0.6	37

#	Article	IF	CITATIONS
217	The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method. Mathematics, 2021, 9, 260.	1.1	37
218	A new fifth-order nonlinear integrable equation: multiple soliton solutions. Physica Scripta, 2011, 83, 015012.	1.2	36
219	Multiple kink solutions for two coupled integrable (<mml:math) 0.784314="" 1="" 1-6.<="" 10="" 2016,="" 50="" 58,="" 67="" applied="" etqq1="" letters,="" mathematics="" overlock="" rgbt="" systems.="" td="" tf="" tj=""><td>72 Td (xmlı 1.5</td><td>ns:mml="htt 36</td></mml:math)>	72 Td (xmlı 1.5	ns:mml="htt 36
220	Interaction of lumps and dark solitons in the Mel'nikov equation. Nonlinear Dynamics, 2018, 92, 2049-2059.	2.7	36
221	Painlevé analysis for Boiti–Leon–Manna–Pempinelli equation of higher dimensions with time-dependent coefficients: Multiple soliton solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126310.	0.9	36
222	On the modified Gardner type equation and its time fractional form. Chaos, Solitons and Fractals, 2022, 155, 111694.	2.5	36
223	Multiple soliton solutions and multiple singular soliton solutions for -dimensional shallow water wave equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2927-2930.	0.9	35
224	Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1122-1126.	1.7	35
225	Anatomy of modified Korteweg–de Vries equation for studying the modulated envelope structures in non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions. Physics of Plasmas, 2018, 25, .	0.7	35
226	The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the -Burger equations. Physica D: Nonlinear Phenomena, 2006, 213, 147-151.	1.3	34
227	A variety of distinct kinds of multiple soliton solutions for a (3 + 1)â€dimensional nonlinear evolution equation. Mathematical Methods in the Applied Sciences, 2013, 36, 349-357.	1.2	34
228	Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiple kink solutions. AEJ - Alexandria Engineering Journal, 2018, 57, 1971-1976.	3.4	34
229	Higher-order Sasa–Satsuma equation: Bright and dark optical solitons. Optik, 2021, 243, 167421.	1.4	34
230	Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 904-909.	1.7	33
231	Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions. Journal of the Franklin Institute, 2010, 347, 618-626.	1.9	33
232	On short-range pulse propagation described by (2 + 1)-dimensional Schrödinger's hyperbolic equation in nonlinear optical fibers. Physica Scripta, 2020, 95, 075203.	1.2	33
233	Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2015, 53, 1054-1067.	0.7	32
234	A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation. Waves in Random and Complex Media, 2021, 31, 46-56.	1.6	32

#	Article	IF	CITATIONS
235	A study on a boundary-layer equation arising in an incompressible fluid. Applied Mathematics and Computation, 1997, 87, 199-204.	1.4	31
236	Existence and construction of compacton solutions. Chaos, Solitons and Fractals, 2004, 19, 463-470.	2.5	31
237	Multiple-soliton solutions for the fifth order Caudrey–Dodd–Gibbon (CDG) equation. Applied Mathematics and Computation, 2008, 197, 719-724.	1.4	31
238	The Cole–Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld–Sokolov–Satsuma–Hirota equation. Applied Mathematics and Computation, 2009, 207, 248-255.	1.4	31
239	Negativeâ€order modified KdV equations: multiple soliton and multiple singular soliton solutions. Mathematical Methods in the Applied Sciences, 2016, 39, 661-667.	1.2	31
240	A Two-Mode Burgers Equation of Weak Shock Waves in a Fluid: Multiple Kink Solutions and Other Exact Solutions. International Journal of Applied and Computational Mathematics, 2017, 3, 3977-3985.	0.9	31
241	A variety of optical solitons for nonlinear Schrödinger equation with detuning term by the variational iteration method. Optik, 2019, 196, 163169.	1.4	31
242	Breather wave and lumpâ€type solutions of new (3 + 1)â€dimensional Boiti–Leon–Manna–Pempiı equation in incompressible fluid. Mathematical Methods in the Applied Sciences, 2021, 44, 2200-2208.	nelli 1.2	31
243	Variants of the generalized fifth-order KdV equation with compact and noncompact structures. Chaos, Solitons and Fractals, 2004, 21, 579-589.	2.5	30
244	Exact solutions with compact and noncompact structures for the one-dimensional generalized Benjamin–Bona–Mahony equation. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 855-867.	1.7	30
245	A new (2+1)-dimensional Korteweg–de Vries equation and its extension to a new (3+1)-dimensional Kadomtsev–Petviashvili equation. Physica Scripta, 2011, 84, 035010.	1.2	30
246	On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions. Physics of Plasmas, 2017, 24, .	0.7	30
247	A new nonlinear integrable fifth-order equation: multiple soliton solutions with unusual phase shifts. Physica Scripta, 2018, 93, 115201.	1.2	30
248	New (3 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlevé integrability. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126787.	0.9	30
249	Multiple-soliton solutions for coupled KdV and coupled KP systems. Canadian Journal of Physics, 2009, 87, 1227-1232.	0.4	29
250	Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations. Physica Scripta, 2014, 89, 095206.	1.2	29
251	The variational iteration method for solving linear and nonlinear Volterra integral and integral and integro-differential equations. International Journal of Computer Mathematics, 2010, 87, 1131-1141.	1.0	28
252	Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations. Physica Scripta, 2012, 85, 025006.	1.2	28

#	Article	IF	CITATIONS
253	On soliton solutions for the Fitzhugh–Nagumo equation with time-dependent coefficients. Applied Mathematical Modelling, 2013, 37, 3821-3828.	2.2	28
254	Traveling wave solutions for fifth-order KdV type equations with time-dependent coefficients. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 404-408.	1.7	28
255	A construction of compact and noncompact solutions for nonlinear dispersive equations of even order. Applied Mathematics and Computation, 2003, 135, 411-424.	1.4	27
256	Nonlinear variants of KdV and KP equations with compactons, solitons and periodic solutions. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 451-463.	1.7	27
257	New solitary wave and periodic wave solutions to the (2+1)-dimensional Nizhnik–Novikov–Veselov system. Applied Mathematics and Computation, 2007, 187, 1584-1591.	1.4	27
258	Multiple soliton solutions and multiple singular soliton solutions for the (3+1)-dimensional Burgers equations. Applied Mathematics and Computation, 2008, 204, 942-948.	1.4	27
259	A KdV6 hierarchy: Integrable members with distinct dispersion relations. Applied Mathematics Letters, 2015, 45, 86-92.	1.5	27
260	Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics. Optical and Quantum Electronics, 2018, 50, 1.	1.5	27
261	High-order breathers, lumps, and semi-rational solutions to the (2 + 1)-dimensional Hirota–Satsuma–Ito equation. Physica Scripta, 2019, 94, 075203.	1.2	27
262	Higher dimensional nonlinear SchrĶdinger equations in anomalous dispersion and normal dispersive regimes: Bright and dark optical solitons. Optik, 2020, 222, 165327.	1.4	27
263	The variable separated ODE and the tanh methods for solving the combined and the double combined sinh–cosh-Gordon equations. Applied Mathematics and Computation, 2006, 177, 745-754.	1.4	26
264	Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa–Holm equations by using new hyperbolic schemes. Applied Mathematics and Computation, 2006, 182, 412-424.	1.4	26
265	Padé approximants and Adomian decomposition method for solving the Flierl–Petviashivili equation and its variants. Applied Mathematics and Computation, 2006, 182, 1812-1818.	1.4	26
266	N-soliton solutions for the combined KdV–CDG equation and the KdV–Lax equation. Applied Mathematics and Computation, 2008, 203, 402-407.	1.4	26
267	Completely integrable coupled KdV and coupled KP systems. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2828-2835.	1.7	26
268	A variety of exact travelling wave solutions for the (2+1)-dimensional Boiti–Leon–Pempinelli equation. Applied Mathematics and Computation, 2010, 217, 1484-1490.	1.4	26
269	Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota–Maccari system. Physica Scripta, 2012, 85, 065011.	1.2	26
270	On the nonlocal Boussinesq equation: Multiple-soliton solutions. Applied Mathematics Letters, 2013, 26, 1094-1098.	1.5	26

#	Article	IF	CITATIONS
271	Higher order numeric solutions of the Lane–Emden-type equations derived from the multi-stage modified Adomian decomposition method. International Journal of Computer Mathematics, 2017, 94, 197-215.	1.0	26
272	Bright, dark and Gaussons optical solutions for fourth-order Schrödinger equations with cubic–quintic and logarithmic nonlinearities. Optik, 2020, 202, 163564.	1.4	26
273	A NOTE ON USING ADOMIAN DECOMPOSITION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS. Foundations of Physics Letters, 2000, 13, 493-498.	0.6	25
274	Special types of the nonlinear dispersive Zakharov–Kuznetsov equation with compactons, solitons, and periodic solutions. International Journal of Computer Mathematics, 2004, 81, 1107-1119.	1.0	25
275	Nonlinear dispersive special type of the Zakharov–Kuznetsov equation ZK(n,n) with compact and noncompact structures. Applied Mathematics and Computation, 2005, 161, 577-590.	1.4	25
276	Dark solitons for a combined potential KdV and Schwarzian KdV equations with t-dependent coefficients and forcing term. Applied Mathematics and Computation, 2011, 217, 8846-8851.	1.4	25
277	A reliable study for extensions of the Bratu problem with boundary conditions. Mathematical Methods in the Applied Sciences, 2012, 35, 845-856.	1.2	25
278	Kink solutions for three new fifth order nonlinear equations. Applied Mathematical Modelling, 2014, 38, 110-118.	2.2	25
279	Negative-order integrable modified KdV equations of higher orders. Nonlinear Dynamics, 2018, 93, 1371-1376.	2.7	25
280	Protracted study on a real physical phenomenon generated by media inhomogeneities. Results in Physics, 2021, 31, 104933.	2.0	25
281	Travelling wave solutions for the MKdV-sine-Gordon and the MKdV-sinh-Gordon equations by using a variable separated ODE method. Applied Mathematics and Computation, 2006, 181, 1713-1719.	1.4	24
282	A (3+1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1548-1552.	1.4	24
283	The generalized KaupßBoussinesq equation: multiple soliton solutions. Waves in Random and Complex Media, 2015, 25, 473-481.	1.6	24
284	Trial equation method for solving the generalized Fisher equation with variable coefficients. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1260-1262.	0.9	24
285	Two (3+1)-dimensional Schrödinger equations with cubic–quintic–septic nonlinearities: Bright and dark optical solitons. Optik, 2021, 235, 166646.	1.4	24
286	Compact and noncompact structures in a class of nonlinearly dispersive equations. Mathematics and Computers in Simulation, 2003, 62, 171-189.	2.4	23
287	Compacton solutions of the Kawahara-type nonlinear dispersive equation. Applied Mathematics and Computation, 2003, 145, 133-150.	1.4	23
288	N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions. Applied Mathematics and Computation, 2011, 217, 8840-8845.	1.4	23

#	Article	IF	CITATIONS
289	The variational iteration method for solving systems of equations of Emden–Fowler type. International Journal of Computer Mathematics, 2011, 88, 3406-3415.	1.0	23
290	A study on two extensions of the Bogoyavlenskii–Schieff equation. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1500-1505.	1.7	23
291	New (3+1)â€dimensional nonlinear equations with KdV equation constituting its main part: multiple soliton solutions. Mathematical Methods in the Applied Sciences, 2016, 39, 886-891.	1.2	23
292	Painlevé analysis for new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equations with cons and time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 4259-4266.	stant 1.6	23
293	New extended rational trigonometric methods and applications. Waves in Random and Complex Media, 2020, 30, 5-26.	1.6	23
294	Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method. Applied Mathematics and Computation, 2006, 174, 289-299.	1.4	22
295	Regular soliton solutions and singular soliton solutions for the modified Kadomtsev–Petviashvili equations. Applied Mathematics and Computation, 2008, 204, 227-232.	1.4	22
296	One and two soliton solutions for the sinh–Gordon equation in (1+1), (2+1) and (3+1) dimensions. Applied Mathematics Letters, 2012, 25, 2354-2358.	1.5	22
297	Soliton solutions for two (3+1) -dimensional non-integrable KdV-type equations. Mathematical and Computer Modelling, 2012, 55, 1845-1848.	2.0	22
298	Multiple soliton solutions and other exact solutions for a twoâ€mode KdV equation. Mathematical Methods in the Applied Sciences, 2017, 40, 2277-2283.	1.2	22
299	Two new Painlevé integrable KdV–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dynamics, 2021, 104, 4311-4315.	2.7	22
300	Generalized forms of the phi-four equation with compactons, solitons and periodic solutions. Mathematics and Computers in Simulation, 2005, 69, 580-588.	2.4	21
301	A reliable treatment of the physical structure for the nonlinear equation K(m,n). Applied Mathematics and Computation, 2005, 163, 1081-1095.	1.4	21
302	New compact and noncompact solutions for two variants of a modified Camassa–Holm equation. Applied Mathematics and Computation, 2005, 163, 1165-1179.	1.4	21
303	Explicit travelling wave solutions of variants of the K(n,n) and the ZK(n,n) equations with compact and noncompact structures. Applied Mathematics and Computation, 2006, 173, 213-230.	1.4	21
304	Compactons and solitary wave solutions for the Boussinesq wave equation and its generalized form. Applied Mathematics and Computation, 2006, 182, 529-535.	1.4	21
305	Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg–Landau equations. Applied Mathematics Letters, 2006, 19, 1007-1012.	1.5	21
306	A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations. Chaos, Solitons and Fractals, 2007, 33, 703-710.	2.5	21

#	Article	IF	CITATIONS
307	The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem. Applied Mathematics and Computation, 2007, 193, 455-462.	1.4	21
308	Distinct kinds of multiple-soliton solutions for a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation. Physica Scripta, 2011, 84, 055006. A study on a complement of the source o	1.2 84314 rgB	21 T./Overlock
309	and a (<mml:math)="" altimg="si2.gif" display="inline" etq<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>9q1¹1⁵0.78</td><td>4314 rgBT /(</td></mml:math>	9q1 ¹ 1 ⁵ 0.78	4314 rgBT /(
310	Solving New Fourtha€"Order Emdena€"Fowler-Type Equations by the Adomian Decomposition Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 121-131.	1.4	21
311	On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Modified Adomian Method. Chemical Engineering Communications, 2015, 202, 1081-1088.	1.5	21
312	A modified homotopy perturbation method for singular time dependent Emden–Fowler equations with boundary conditions. Journal of Mathematical Chemistry, 2016, 54, 918-931.	0.7	21
313	An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models. International Journal of Computer Mathematics, 2016, 93, 1330-1346.	1.0	21
314	A new integrable nonlocal modified KdV equation: Abundant solutions with distinct physical structures. Journal of Ocean Engineering and Science, 2017, 2, 1-4.	1.7	21
315	Multiple-soliton solutions and multiple-singular soliton solutions for two higher-dimensional shallow water wave equations. Applied Mathematics and Computation, 2009, 211, 495-501.	1.4	20
316	A reliable treatment of singular Emden–Fowler initial value problems and boundary value problems. Applied Mathematics and Computation, 2011, 217, 10387-10395.	1.4	20
317	The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients. Open Engineering, 2014, 4, .	0.7	20
318	Closed form solutions of complex wave equations via the modified simple equation method. Cogent Physics, 2017, 4, 1312751.	0.7	20
319	Forward scattering for non-linear wave propagation in (3 + 1)-dimensional Jimbo-Miwa equation using singular manifold and group transformation methods. Waves in Random and Complex Media, 2022, 32, 663-675.	1.6	20
320	New integrable (2+1)- and (3+1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126529.	0.9	20
321	Adomian decomposition method for modelling the dissipative higher-order rogue waves in a superthermal collisional plasma. Journal of Taibah University for Science, 2021, 15, 971-983.	1.1	20
322	The effect of the order of nonlinear dispersive equation on the compact and noncompact solutions. Applied Mathematics and Computation, 2003, 138, 309-319.	1.4	19
323	Extended KP equations and extended system of KP equations: multiple-soliton solutions. Canadian Journal of Physics, 2011, 89, 739-743.	0.4	19
324	Structures of multiple soliton solutions of the generalized, asymmetric and modified Nizhnik–Novikov–Veselov equations. Applied Mathematics and Computation, 2012, 218, 11344-11349.	1.4	19

#	Article	IF	CITATIONS
325	Multiple soliton solutions for an integrable couplings of the Boussinesq equation. Ocean Engineering, 2013, 73, 38-40.	1.9	19
326	Gaussons. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1699-1709.	1.6	19
327	Two new Painlevé-integrable extended Sakovich equations with (2 + 1) and (3 + 1) dimension International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1379-1387.	^{1S.} 1.6	19
328	Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero–Bogoyavlenskii–Schiff equation. Heliyon, 2020, 6, e03701.	1.4	19
329	Compactons, solitons and periodic solutions for variants of the KdV and the KP equations. Applied Mathematics and Computation, 2005, 161, 561-575.	1.4	18
330	The modified decomposition method for analytic treatment of non-linear integral equations and systems of non-linear integral equations. International Journal of Computer Mathematics, 2005, 82, 1107-1115.	1.0	18
331	Multiple-soliton solutions of the perturbed KdV equation. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3270-3273.	1.7	18
332	Variants of a (3+1)-dimensional generalized BKP equation: Multiple-front waves solutions. Computers and Fluids, 2014, 97, 164-167.	1.3	18
333	The variational iteration method for solving the Volterra integro-differential forms of the Lane–Emden equations of the first and the second kind. Journal of Mathematical Chemistry, 2014, 52, 613-626.	0.7	18
334	On the Adomian decomposition method for solving the Stefan problem. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 912-928.	1.6	18
335	Gaussian soliton solutions to a variety of nonlinear logarithmic Schrödinger equation. Journal of Electromagnetic Waves and Applications, 2016, 30, 1909-1917.	1.0	18
336	Group invariant solutions of (2+1)-dimensional rdDym equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 115202.	1.2	18
337	Lump molecules in fluid systems: Kadomtsev-Petviashvili I case. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 424, 127848.	0.9	18
338	Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation. Applied Mathematics and Computation, 2010, 216, 332-336.	1.4	17
339	A one-soliton solution of the equation with generalized evolution and time-dependent coefficients. Nonlinear Analysis: Real World Applications, 2011, 12, 2822-2825.	0.9	17
340	A new integrable equation that combines the KdV equation with the negativeâ€order KdV equation. Mathematical Methods in the Applied Sciences, 2018, 41, 80-87.	1.2	17
341	The tanh method for a reliable treatment of the K(n,n) and the KP(n,n) equations and its variants. Applied Mathematics and Computation, 2005, 170, 361-379.	1.4	16
342	Multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation. Applied Mathematics and Computation, 2008, 203, 277-283.	1.4	16

#	Article	IF	CITATIONS
343	N-soliton solutions for the integrable bidirectional sixth-order Sawada–Kotera equation. Applied Mathematics and Computation, 2010, 216, 2317-2320.	1.4	16
344	Non-integrable variants of Boussinesq equation with two solitons. Applied Mathematics and Computation, 2010, 217, 820-825.	1.4	16
345	A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons. Physica Scripta, 2012, 86, 045501.	1.2	16
346	(2+1)-Dimensional Burgers equations BE(m+n+1): Using the recursion operator. Applied Mathematics and Computation, 2013, 219, 9057-9068.	1.4	16
347	Kinks and travelling wave solutions for Burgers-like equations. Applied Mathematics Letters, 2014, 38, 174-179.	1.5	16
348	A New Integrable (2+1)-Dimensional Generalized Breaking Soliton Equation: N-Soliton Solutions and Traveling Wave Solutions. Communications in Theoretical Physics, 2016, 66, 385-388.	1.1	16
349	Three-dimensional modulational instability of the electrostatic waves in e–p–i magnetoplasmas having superthermal particles. Physics of Plasmas, 2017, 24, 022126.	0.7	16
350	Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator. Waves in Random and Complex Media, 2017, 27, 768-778.	1.6	16
351	Novel highâ€order breathers and rogue waves in the Boussinesq equation via determinants. Mathematical Methods in the Applied Sciences, 2020, 43, 3701-3715.	1.2	16
352	New integrable (2+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Multiple optical kink wave solutions. Optik, 2020, 216, 164640.	1.4	16
353	Lie symmetry analysis for complex soliton solutions of coupled complex short pulse equation. Mathematical Methods in the Applied Sciences, 2021, 44, 5238-5250.	1.2	16
354	A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation. Filomat, 2017, 31, 831-840.	0.2	16
355	<i>M</i> -component nonlinear evolution equations: multiple soliton solutions. Physica Scripta, 2010, 81, 055004.	1.2	15
356	Multiple and exact soliton solutions of the perturbed Korteweg–de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods. Physical Review E, 2017, 95, 062211.	0.8	15
357	A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions. Waves in Random and Complex Media, 2018, 28, 533-543.	1.6	15
358	Painlevé analysis for three integrable shallow water waves equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 996-1008.	1.6	15
359	Two new integrable Kadomtsev–Petviashvili equations with time-dependent coefficients: multiple real and complex soliton solutions. Waves in Random and Complex Media, 2020, 30, 776-786.	1.6	15
360	Computational Method for Reaction Diffusion-Model Arising in a Spherical Catalyst. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	15

#	Article	IF	CITATIONS
361	Lie symmetry analysis of a stochastic gene evolution in double-chain deoxyribonucleic acid system. Waves in Random and Complex Media, 2022, 32, 2903-2917.	1.6	15
362	Equality of partial solutions in the decomposition method for partial differential equations. International Journal of Computer Mathematics, 1997, 65, 293-308.	1.0	14
363	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	14
364	xmlns:tb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/. Multiple soliton solutions for some (3+1)-dimensional nonlinear models generated by the Jaulent–Miodek hierarchy. Applied Mathematics Letters, 2012, 25, 1936-1940.	1.5	14
365	A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method. Open Engineering, 2014, 5, .	0.7	14
366	Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders. Pramana - Journal of Physics, 2016, 87, 1.	0.9	14
367	On the super freak waves in multicomponent plasmas having two-negative ions: Xe +Ââ^'ÂF â^'Ââr'ÂSF 6 â^' and Ar +Ââ^'ÂFâ^'Ââ^'SF 6 â^' plasmas. Indian Journal of Physics, 2017, 91, 939-946.	0.9	14
368	A comparison of modified runge-kutta formulas based on a variety of means. International Journal of Computer Mathematics, 1994, 50, 105-112.	1.0	13
369	Compacton solutions of higher order nonlinear dispersive KdV-like equations. Applied Mathematics and Computation, 2004, 147, 449-460.	1.4	13
370	Compact and noncompact solutions for nonlinear dispersive variants of the generalized KdV equation. Applied Mathematics and Computation, 2004, 159, 577-588.	1.4	13
371	Analytic study on the generalized fifth-order KdV equation: New solitons and periodic solutions. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1172-1180.	1.7	13
372	Soliton solutions for the fifth-order KdV equation and the Kawahara equation with time-dependent coefficients. Physica Scripta, 2010, 82, 035009.	1.2	13
373	Integrability of coupled KdV equations. Open Physics, 2011, 9, .	0.8	13
374	<i>N</i> -soliton solutions for the integrable modified KdV-sine-Gordon equation. Physica Scripta, 2014, 89, 065805.	1.2	13
375	New solutions for two integrable cases of a generalized fifth-order nonlinear equation. Modern Physics Letters B, 2015, 29, 1550065.	1.0	13
376	Dual solutions for nonlinear boundary value problems by the Adomian decomposition method. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2393-2409.	1.6	13
377	Integrable couplings of the generalized Vakhnenko equation: multiple soliton solutions. JVC/Journal of Vibration and Control, 2016, 22, 915-919.	1.5	13
378	Dual solutions for nonlinear boundary value problems by the variational iteration method. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 210-220.	1.6	13

#	Article	IF	CITATIONS
379	Some new integrable systems of two-component fifth-order equations. Nonlinear Dynamics, 2017, 87, 1111-1120.	2.7	13
380	A new trial equation method for finding exact chirped soliton solutions of the quintic derivative nonlinear SchrA¶dinger equation with variable coefficients. Waves in Random and Complex Media, 2017, 27, 153-162.	1.6	13
381	Soliton solutions through optical fibers for quadratic–cubic nonlinear medium: A complex ansÃæe approach. Optik, 2021, 229, 166268.	1.4	13
382	Solitary Waves Theory. Nonlinear Physical Science, 2009, , 479-502.	0.2	13
383	Exponential time differencing method for modeling the dissipative rouge waves and breathers in a collisional plasma. European Physical Journal Plus, 2021, 136, 1.	1.2	13
384	A NEW (3+1)-DIMENSIONAL KDV EQUATION AND MKDV EQUATION WITH THEIR CORRESPONDING FRACTIONAL FORMS. Fractals, 2022, 30, .	1.8	13
385	Generalized Boussinesq type of equations with compactons, solitons and periodic solutions. Applied Mathematics and Computation, 2005, 167, 1162-1178.	1.4	12
386	Kinks and solitons solutions for the generalized KdV equation with two power nonlinearities. Applied Mathematics and Computation, 2006, 183, 1181-1189.	1.4	12
387	Soliton solutions of the dispersive sine-Gordon and the dispersive sinh-Gordon equations with fourth spatial or spatio-temporal derivatives. Physica Scripta, 2011, 84, 065007.	1.2	12
388	Bright and dark solitons for a generalized Korteweg-de Vries–modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients. Canadian Journal of Physics, 2011, 89, 253-259.	0.4	12
389	(2 + 1)-dimensional Korteweg–de Vries (N) equations derived by using the Korteweg–de Vries recursion operator. Physica Scripta, 2012, 86, 065007.	1.2	12
390	(2+1)-Dimensional mKdV (N) equations by the mKdV recursion operator: Multiple soliton and multiple singular soliton solutions. Applied Mathematics and Computation, 2012, 219, 2535-2544.	1.4	12
391	A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator. Computers and Fluids, 2014, 93, 41-45.	1.3	12
392	Two reliable methods for solving the Volterra integral equation with a weakly singular kernel. Journal of Computational and Applied Mathematics, 2016, 302, 71-80.	1.1	12
393	Negative-Order KdV and Negative-Order KP Equations: Multiple Soliton Solutions. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 291-296.	0.8	12
394	The variational iteration method for solving systems of third-order Emden-Fowler type equations. Journal of Mathematical Chemistry, 2017, 55, 799-817.	0.7	12
395	A New Integrable Equation Constructed via Combining the Recursion Operator of the Calogero-BogoyavlenskiiSchiff (CBS) Equation and its Inverse Operator. Applied Mathematics and Information Sciences, 2017, 11, 1241-1246.	0.7	12
396	Derivation of lump solutions to a variety of Boussinesq equations with distinct dimensions. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3072-3082.	1.6	12

#	Article	IF	CITATIONS
397	Bright and dark envelope optical solitons for a (2+1)-dimensional cubic nonlinear Schrödinger equation. Optik, 2022, 265, 169525.	1.4	12
398	Compact and noncompact structures for a variant of KdV equation in higher dimensions. Applied Mathematics and Computation, 2002, 132, 29-45.	1.4	11
399	A study on compacton-like solutions for the modified KdV and fifth order KdV-like equations. Applied Mathematics and Computation, 2004, 147, 439-447.	1.4	11
400	A study on an integrable system of coupled KdV equations. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2846-2850.	1.7	11
401	Multiple soliton solutions for the Bogoyavlenskii's generalized breaking soliton equations and its extension form. Applied Mathematics and Computation, 2010, 217, 4282-4288.	1.4	11
402	A study on the (2 + 1)â€dimensional KdV4 equation derived by using the KdV recursion operator. Mathematical Methods in the Applied Sciences, 2013, 36, 1760-1767.	1.2	11
403	The Variational Iteration Method for Solving New Fourth-Order Emden–Fowler Type Equations. Chemical Engineering Communications, 2015, 202, 1425-1437.	1.5	11
404	Peakon and solitonic solutions for KdV-like equations. Physica Scripta, 2015, 90, 045203.	1.2	11
405	The Volterra integral form of the Lane–Emden equation: new derivations and solution by the Adomian decomposition method. Journal of Applied Mathematics and Computing, 2015, 47, 365-379.	1.2	11
406	New exact solutions to extended (3 + 1)â€dimensional Jimboâ€Miwa equations by using bilinear forms. Mathematical Methods in the Applied Sciences, 2018, 41, 7566-7575.	1.2	11
407	Construction of exact solutions in a magneto-electro-elastic circular rod. Waves in Random and Complex Media, 2020, 30, 340-353.	1.6	11
408	A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 174-185.	1.6	11
409	Unsteady three-dimensional laminar flow over a submerged plate in electrically conducting fluid with applied magnetic field. Waves in Random and Complex Media, 2023, 33, 505-524.	1.6	11
410	Plasma-waves evolution and propagation modeled by sixth order Ramani and coupled Ramani equations using symmetry methods. Physica Scripta, 2021, 96, 085213.	1.2	11
411	A variety of bright and dark optical soliton solutions of an extended higher-order Sasa–Satsuma equation. Optik, 2021, 247, 167938.	1.4	11
412	Two Kinds of Multiple Wave Solutions for the Potential YTSF Equation and a Potential YTSF-Type Equation. Journal of Applied Nonlinear Dynamics, 2012, 1, 51-58.	0.1	11
413	New hyperbolic schemes for reliable treatment of Boussinesq equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 358, 409-413.	0.9	10
414	Integrability of two coupled Kadomtsev–Petviashvili equations. Pramana - Journal of Physics, 2011, 77, 233-242.	0.9	10

#	Article	IF	CITATIONS
415	Multiple soliton solutions for a new coupled Ramani equation. Physica Scripta, 2011, 83, 015002.	1.2	10
416	SOLITON SOLUTIONS FOR SEVENTH-ORDER KAWAHARA EQUATION WITH TIME-DEPENDENT COEFFICIENTS. Modern Physics Letters B, 2011, 25, 643-648.	1.0	10
417	New bilinearization, BÜklund transformation and infinite conservation laws for the KdV6 equation with Bell polynomials. Mathematical Methods in the Applied Sciences, 2016, 39, 2716-2721.	1.2	10
418	Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions. Waves in Random and Complex Media, 2021, 31, 867-878.	1.6	10
419	Analytical and numerical treatment to the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Engineering, 2021, 10, 187-200.	1.4	10
420	Multiple Kink Solutions for the (2+1)-dimensional SharmaTassoOlver and the SharmaTassoOlverBurgers Equations. Journal of Applied Nonlinear Dynamics, 2013, 2, 95-102.	0.1	10
421	On the numerical solution of the Goursat problem. Applied Mathematics and Computation, 1993, 59, 89-95.	1.4	9
422	An analytic study of compacton solutions for variants of Kuramoto–Sivashinsky equation. Applied Mathematics and Computation, 2004, 148, 571-585.	1.4	9
423	The variable separated ODE method for travelling wave solutions for the Boussinesq-double sine-Gordon and the Boussinesq-double sinh-Gordon equations. Mathematics and Computers in Simulation, 2006, 72, 1-9.	2.4	9
424	Soliton solutions for (2+1)-dimensional and (3+1)-dimensional K(m,n) equations. Applied Mathematics and Computation, 2010, 217, 1733-1740.	1.4	9
425	Bright soliton solution to a generalized Burgers–KdV equation with time-dependent coefficients. Applied Mathematics and Computation, 2010, 217, 466-471.	1.4	9
426	Combined equations of the Burgers hierarchy: multiple kink solutions and multiple singular kink solutions. Physica Scripta, 2010, 82, 025001.	1.2	9
427	New higher-dimensional fifth-order nonlinear equations with multiple soliton solutions. Physica Scripta, 2011, 84, 025007.	1.2	9
428	Envelope solitons for generalized forms of the phi-four equation. Journal of King Saud University - Science, 2013, 25, 129-133.	1.6	9
429	Solving Systems of Fourth-Order Emden–Fowler Type Equations by the Variational Iteration Method. Chemical Engineering Communications, 2016, 203, 1081-1092.	1.5	9
430	Gaussian solitary waves for the logarithmic-BBM and the logarithmic-TRLW equations. Journal of Mathematical Chemistry, 2016, 54, 252-268.	0.7	9
431	A numerical approach for a class of astrophysics equations using piecewise spectral-variational iteration method. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 358-378.	1.6	9
432	Two integrable third-order and fifth-order KdV equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2093-2102.	1.6	9

#	Article	IF	CITATIONS
433	A variety of negative-order integrable KdV equations of higher orders. Waves in Random and Complex Media, 2019, 29, 195-203.	1.6	9
434	SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY A MODIFIED ANSÃ,,TZ WITH VARIABLE COEFFICIENTS. Journal of Applied Analysis and Computation, 2022, 12, 517-532.	0.2	9
435	Couplings of a fifth order nonlinear integrable equation: Multiple kink solutions. Computers and Fluids, 2013, 84, 97-99.	1.3	8
436	Multiple soliton solutions for the Whitham–Broer–Kaup model in the shallow water small-amplitude regime. Physica Scripta, 2013, 88, 035007.	1.2	8
437	ON SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR FOURTH-ORDER BEAM EQUATIONS. Mathematical Modelling and Analysis, 2016, 21, 304-318.	0.7	8
438	New (3+1)-dimensional integrable fourth-order nonlinear equation: lumps and multiple soliton solutions. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1664-1673.	1.6	8
439	Abundant Solutions of Distinct Physical Structures for Three Shallow Water Waves Models. Discontinuity, Nonlinearity, and Complexity, 2017, 6, 295-304.	0.1	8
440	Compact structures for variants of the generalized KdV and the generalized KP equations. Applied Mathematics and Computation, 2004, 149, 103-117.	1.4	7
441	A variety of exact wave solutions with distinct physical structures for the Boussinesq system. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 376-390.	1.7	7
442	New kinds of solitons and periodic solutions to the generalized KdV equation. Numerical Methods for Partial Differential Equations, 2007, 23, 247-255.	2.0	7
443	Analytic study on the one and two spatial dimensional potential KdV equations. Chaos, Solitons and Fractals, 2008, 36, 175-181.	2.5	7
444	Four (2+1)-dimensional integrable extensions of the Kadomtsev–Petviashvili equation. Applied Mathematics and Computation, 2010, 215, 3631-3644.	1.4	7
445	Soliton solution for an inhomogeneous highly dispersive media with a dual-power nonlinearity law. International Journal of Computer Mathematics, 2010, 87, 1178-1185.	1.0	7
446	Nonsingular complexiton solutions for two higher-dimensional fifth-order nonlinear integrable equations. Physica Scripta, 2013, 88, 025001.	1.2	7
447	A variational approach for a class of nonlocal elliptic boundary value problems. Journal of Mathematical Chemistry, 2014, 52, 1324-1337.	0.7	7
448	New (3+1)-dimensional nonlinear evolution equation: multiple soliton solutions. Open Engineering, 2014, 4, .	0.7	7
449	New approximate solutions of the Blasius equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1590-1599.	1.6	7
450	Perturbation, symmetry analysis, BÃæklund and reciprocal transformation for the extended Boussinesq equation in fluid mechanics. Communications in Theoretical Physics, 2021, 73, 045003.	1.1	7

#	Article	IF	CITATIONS
451	Closed form traveling wave solutions of non-linear fractional evolution equations through the modified simple equation method. Thermal Science, 2018, 22, 341-352.	0.5	7
452	On the numerical solution of by a class of nonlinear trapezoidal formulas. International Journal of Computer Mathematics, 1994, 51, 229-238.	1.0	6
453	Compactons and solitary patterns solutions to fifth-order KdV-like equations. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 273-279.	1.2	6
454	Two integrable extensions of the Kadomtsev-Petviashvili equation. Open Physics, 2011, 9, .	0.8	6
455	A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. International Journal of Biomathematics, 2014, 07, 1450020.	1.5	6
456	The variational iteration method for solving the Volterra integro-differential forms of the Lane-Emden and the Emden-Fowler problems with initial and boundary value conditions. Open Engineering, 2015, 5, .	0.7	6
457	An efficient approach for solving second-order nonlinear differential equation with Neumann boundary conditions. Journal of Mathematical Chemistry, 2015, 53, 767-790.	0.7	6
458	Numerical solutions of fourth-order Volterra integro-differential equations by the Green's function and decomposition method. Mathematical Sciences, 2016, 10, 159-166.	1.0	6
459	New integrable Vakhnenko–Parkes (VP) equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4598-4606.	1.6	6
460	One Kink Solution for a Variety of Nonlinear Fifth-order Equations. Discontinuity, Nonlinearity, and Complexity, 2012, 1, 161-170.	0.1	6
461	New soliton solutions of Dual mode Sawada Kotera equationÂusing a new form of modified Kudryashov method and the finite difference method. Journal of Ocean Engineering and Science, 2022, , .	1.7	6
462	Solitary wave solutions and periodic solutions for higher-order nonlinear evolution equations. Applied Mathematics and Computation, 2006, 181, 1683-1692.	1.4	5
463	Exact travelling wave solutions to seventh-order and ninth-order KdV-like equations. Applied Mathematics and Computation, 2006, 182, 771-780.	1.4	5
464	New soliton and periodic solutions for the fifth-order forms of the Lax and Sawada–Kotera equations. International Journal of Computer Mathematics, 2007, 84, 1663-1681.	1.0	5
465	Chapter 9 The KdV Equation. Handbook of Differential Equations: Evolutionary Equations, 2008, , 485-568.	0.9	5
466	Four (2+1)-dimensional integrable extensions of the KdV equation: Multiple-soliton and multiple singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1463-1476.	1.4	5
467	A COMPLETELY INTEGRABLE SYSTEM OF COUPLED MODIFIED KdV EQUATIONS. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 145-151.	1.1	5
468	Multiple-kink solutions for the (3+1)-dimensional Burgers hierarchy. Physica Scripta, 2011, 84, 035001.	1.2	5

#	Article	IF	CITATIONS
469	Volterra Integro-Differential Equations. , 2011, , 175-212.		5
470	Solving nonlocal initial-boundary value problems for the Lotka–von Foerster model. Applied Mathematics and Computation, 2013, 225, 7-15.	1.4	5
471	A coupled Ramani equation: multiple soliton solutions. Journal of Mathematical Chemistry, 2014, 52, 2133-2140.	0.7	5
472	Some classification of non-commutative Integrable Systems. Nonlinear Dynamics, 2017, 88, 1487-1492.	2.7	5
473	Numerical Investigation of the Beam-Type Nano-electrostatic Actuator Model by Using the Birkhoff Interpolation Method. International Journal of Applied and Computational Mathematics, 2017, 3, 129-146.	0.9	5
474	The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves. Waves in Random and Complex Media, 0, , 1-15.	1.6	5
475	Analytical approximations of three-point generalized Thomas–Fermi and Lane–Emden–Fowler type equations. European Physical Journal Plus, 2022, 137, 1.	1.2	5
476	The decomposition method For solving higher dimensional Initial boundary value problems of variable coefficients. International Journal of Computer Mathematics, 2000, 76, 159-172.	1.0	4
477	MULTIPLE SOLITON SOLUTIONS FOR THREE SYSTEMS OF BROER–KAUP–KUPERSHMIDT EQUATIONS DESCRIBING NONLINEAR AND DISPERSIVE LONG GRAVITY WAVES. Modern Physics Letters B, 2012, 26, 1250126.	1.0	4
478	Multiple soliton solutions for the integrable couplings of the KdV and the KP equations. Open Physics, 2013, 11, .	0.8	4
479	A variational approach to a BVP arising in the modelling of electrically conducting solids. Open Engineering, 2013, 3, 106-112.	0.7	4
480	A seventh-order member of KdV6 hierarchy and its (2+1)-dimensional extensions. Modern Physics Letters B, 2016, 30, 1650198.	1.0	4
481	Lie symmetry analysis and soliton solutions for complex short pulse equation. Waves in Random and Complex Media, 2022, 32, 968-979.	1.6	4
482	Nonlinear Partial Differential Equations. Nonlinear Physical Science, 2009, , 285-351.	0.2	4
483	The singular manifold method for a class of fractional-order diffusion equations. Waves in Random and Complex Media, 0, , 1-12.	1.6	4
484	The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation. European Physical Journal Plus, 2022, 137, 1.	1.2	4
485	A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens. Optical and Quantum Electronics, 2022, 54, .	1.5	4
486	Compact and noncompact structures formed by nonlinear equations with positive and negative exponents. Applied Mathematics and Computation, 2003, 146, 1-25.	1.4	3

#	Article	IF	CITATIONS
487	Effect of nonlinearity of the middle term of nonlinear dispersive equations on physical structures. Applied Mathematics and Computation, 2004, 159, 539-558.	1.4	3
488	Multiple kink solutions for M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions. Applied Mathematics and Computation, 2010, 217, 3564-3570.	1.4	3
489	Volterra-Fredholm Integro-Differential Equations. , 2011, , 285-309.		3
490	One and two soliton solutions for seventh-order Caudrey-Dodd-Gibbon and Caudrey-Dodd-Gibbon-KP equations. Open Physics, 2012, 10, .	0.8	3
491	A reliable iterative method for solving the time-dependent singular Emden-Fowler equations. Open Engineering, 2013, 3, .	0.7	3
492	A variety of (3 + 1)â€dimensional Burgers equations derived by using the Burgers recursion operator. Mathematical Methods in the Applied Sciences, 2015, 38, 2642-2649.	1.2	3
493	A variety of (3+1)-dimensional KdV equations derived by using the KdV recursion operator. Indian Journal of Physics, 2016, 90, 577-582.	0.9	3
494	An extended time-dependent KdV6 equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4205-4212.	1.6	3
495	Simulation of large deflections of a flexible cantilever beam fabricated from functionally graded materials by the Adomian decomposition method. International Journal of Dynamical Systems and Differential Equations, 2020, 10, 287.	0.2	3
496	Multiple optical kink solutions for new Painlev \tilde{A} © integrable (3+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients. Optik, 2020, 219, 165003.	1.4	3
497	Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition method. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23, 20-28.	1.4	3
498	New Gaussian solitary wave solutions in nanofibers. Waves in Random and Complex Media, 0, , 1-13.	1.6	3
499	Soliton Solutions for the Modified KdV6, Modified (2+1)-dimensional Boussinesq, and (3+1)-dimensional KdV Equations. Journal of Applied Nonlinear Dynamics, 2014, 3, 95-104.	0.1	3
500	An Efficient Method for Solving the Generalized Thomas–Fermi and Lane–Emden–Fowler Type Equations with Nonlocal Integral Type Boundary Conditions. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	3
501	Symmetries and dynamic wave solutions for (3+1)-dimensional potential Calogero–Bogoyavlenskii–Schiff equation. Journal of Ocean Engineering and Science, 2022, , .	1.7	3
502	Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders. Waves in Random and Complex Media, 0, , 1-29.	1.6	3
503	Solitary patterns solutions having infinite slopes or cusps for fifth-order KdV like equations in higher dimensions. Applied Mathematics and Computation, 2002, 131, 181-194.	1.4	2
504	Two classes of variants of the generalized KdV equations with compact and noncompact solutions. Applied Mathematics and Computation, 2004, 154, 835-846.	1.4	2

#	Article	IF	CITATIONS
505	The variable separated ODE method for a reliable treatment for the Liouville equation and its variants. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 434-446.	1.7	2
506	Multiple-soliton solutions for the Lax seventh-order equation. Applied Mathematics and Computation, 2008, 198, 877-881.	1.4	2
507	Multiple soliton solutions and multiple singular soliton solutions of the modified KdV equation with first-order correction. Physica Scripta, 2010, 82, 055006.	1.2	2
508	Bright and dark soliton solutions for a new fifth-order nonlinear integrable equation with perturbation terms. Journal of King Saud University - Science, 2012, 24, 295-299.	1.6	2
509	The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Open Engineering, 2013, 3, .	0.7	2
510	Three higher-dimensional Virasoro integrable models: Multiple soliton solutions. , 2013, , .		2
511	A Multiple Variational Iteration Method for Nonlinear Two-Point Boundary Value Problems with Nonlinear Conditions. International Journal of Computational Methods, 2021, 18, 2050028.	0.8	2
512	Family of KdV-type Equations. Nonlinear Physical Science, 2009, , 605-637.	0.2	2
513	Compactons structures for fifth-order KdV like equations in higher dimensions. Applied Mathematics and Computation, 2002, 130, 425-440.	1.4	1
514	Compacton solutions and nonlinear dispersion. Applied Mathematics and Computation, 2003, 142, 495-509.	1.4	1
515	Compactons structures for specific nonlinear dispersive equations. Applied Mathematics and Computation, 2004, 150, 399-407.	1.4	1
516	Multiple soliton solutions and multiple singular soliton solutions for two integrable systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6879-6886.	0.9	1
517	Soliton solutions of the KdV equation with higher-order corrections. Physica Scripta, 2010, 82, 045005.	1.2	1
518	Bright solitons and multiple soliton solutions for coupled modified KdV equations with time-dependent coefficients. Physica Scripta, 2010, 82, 015001.	1.2	1
519	Introductory Concepts of Integral Equations. , 2011, , 33-63.		1
520	Nonlinear Fredholm Integro-Differential Equations. , 2011, , 517-546.		1
521	Dark Solitons for a Generalized Korteweg-de Vries Equation with Time-Dependent Coefficients. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 199-204.	0.7	1
522	Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg–de Vries Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 625-631.	0.7	1

0

#	Article	IF	CITATIONS
523	Comment on "A note on a study on an integrable system of coupled KdV equations― Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 2200-2201.	1.7	1
524	Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Open Engineering, 2013, 3, .	0.7	1
525	The successive differentiation computer-assisted method for solving well-known scientific and engineering models. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2862-2873.	1.6	1
526	Comment on "Soliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma―[Phys. Plasmas 21 , 073709 (2014)]. Physics of Plasmas, 2018, 25, .	0.7	1
527	Construction of a hierarchy of negativeâ€order integrable Burgers equations of higher orders. Mathematical Methods in the Applied Sciences, 2019, 42, 1553-1560.	1.2	1
528	Repeated application of the recursion operator for a new hierarchy of negative-order integrable KdV equations. Waves in Random and Complex Media, 2020, 30, 300-307.	1.6	1
529	Burgers, Fisher and Related Equations. Nonlinear Physical Science, 2009, , 665-681.	0.2	1
530	Performance of hybrid two-phase nanofluid neighboring to permeable plates exposed to elevated temperatures. Waves in Random and Complex Media, 0, , 1-25.	1.6	1
531	The nonlocal potential transformation method for solitary wave packets of a shock-breaking dynamics system. Waves in Random and Complex Media, 0, , 1-14.	1.6	1
532	Boussinesq, Klein-Gordon and Liouville Equations. Nonlinear Physical Science, 2009, , 639-663.	0.2	0
533	Two systems of two-component integrable equations: Multiple soliton solutions and multiple singular soliton solutions. Applied Mathematics and Computation, 2009, 207, 397-405.	1.4	0
534	Analytic Treatment for (2+1)-Dimensional Kortweg-de Vries-Like and Kadomtsev-Petviashvili-Like Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 1101-1105.	0.7	0
535	Adomian Decomposition Method Applied to Non-linear Evolution Equations in Soliton Theory. , 2012, , 1-12.		0
536	An eighth-order KdV-type equation in (1+1) and (2+1) dimensions: multiple soliton solutions. Open Physics, 2013, 11, .	0.8	0
537	Unsteady Rheology of MHD Newtonian Material with Soret and Dufours Effects. International Journal of Applied and Computational Mathematics, 2017, 3, 1299-1311.	0.9	0
538	The Family of the KdV Equations. Nonlinear Physical Science, 2009, , 503-556.	0.2	0
539	Laplace's Equation. Nonlinear Physical Science, 2009, , 237-284.	0.2	0

540 Volterra-Fredholm Integral Equations. , 2011, , 261-283.

#	Article	IF	CITATIONS
541	(3+1)-Dimensional Nonlinear Equations and Couplings of Fifth-Order Equations in the Solitary Waves Theory: Multiple Soliton Solutions. , 2015, , 1-46.		0