Abdul Majid Wazwaz

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6379589/publications.pdf
Version: 2024-02-01

1	Partial Differential Equations and Solitary Waves Theory. Nonlinear Physical Science, 2009,	0.2	608
2	A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, 1999, 102, 77-86.	1.4	493
3	The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation, 2004, 154, 713-723.	1.4	457
4	A new algorithm for calculating adomian polynomials for nonlinear operators. Applied Mathematics and Computation, 2000, 111, 33-51.	1.4	450
5	Linear and Nonlinear Integral Equations. , 2011,		338
6	A new algorithm for solving differential equations of Laneâ€"Emden type. Applied Mathematics and Computation, 2001, 118, 287-310.	1.4	305
7	The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Applied Mathematics and Computation, 2007, 184, 1002-1014.	1.4	239
8	A new modification of the Adomian decomposition method for linear and nonlinear operators. Applied Mathematics and Computation, 2001, 122, 393-405.	1.4	238
9	The tanh method: solitons and periodic solutions for the Doddâ€"Bulloughâ€"Mikhailov and the Tzitzeicaâ€"Doddâ€"Bullough equations. Chaos, Solitons and Fractals, 2005, 25, 55-63.	2.5	238
10	Multiple-soliton solutions for the KP equation by Hirotaâ $€^{T M}$ s bilinear method and by the tanhâ $€^{\prime \prime}$ coth method. Applied Mathematics and Computation, 2007, 190, 633-640.	1.4	237
11	New solitons and kink solutions for the Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1395-1404.	1.7	232
12	The tanhâ€"coth method for solitons and kink solutions for nonlinear parabolic equations. Applied Mathematics and Computation, 2007, 188, 1467-1475.	1.4	222
13	A new method for solving singular initial value problems in the second-order ordinary differential equations. Applied Mathematics and Computation, 2002, 128, 45-57.	1.4	220

23 A comparison between the variational iteration method and Adomian decomposition method. Journal of Computational and Applied Mathematics, 2007, 207, 129-136.

The combined Laplace transformâ€"Adomian decomposition method for handling nonlinear Volterra integroâ $€$ "differential equations. Applied Mathematics and Computation, 2010, 216, 1304-1309.
1.4

145

2.7 142

The modified decomposition method and PadÃ® approximants for solving the Thomasâ€"Fermi equation.
Applied Mathematics and Computation, 1999, 105, 11-19.
1.4

141

27	The Hirotaâ $\operatorname{Tr}^{T M}$ direct method for multiple-soliton solutions for three model equations of shallow water waves. Applied Mathematics and Computation, 2008, 201, 489-503.	1.4	138
28	The extended tanh method for the Zakharovấ"Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1039-1047.	1.7	138
29	The sineâ€"cosine method for obtaining solutions with compact and noncompact structures. Applied Mathematics and Computation, 2004, 159, 559-576.	1.4	137
30	New travelling wave solutions to the Boussinesq and the Kleinâ€"Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 889-901.	1.7	135
31	The modified decomposition method for analytic treatment of differential equations. Applied Mathematics and Computation, 2006, 173, 165-176.	1.4	131
32	The tanh method for generalized forms of nonlinear heat conduction and Burgersâ€"Fisher equations. Applied Mathematics and Computation, 2005, 169, 321-338.	1.4	130
33	Multiple-soliton solutions for extended <mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll">mml:mrowmml:mo (<\|mml:mo>mml:mn3 </mml:mn>mml:mo+</mml:mo> <m limboâ€"Miwa_eouations, Annlied Mathematics_Letters.2017. 64. 21.-2.6.		

The tanh and the sineâ€"cosine methods for compact and noncompact solutions of the nonlinear
xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"

A general bilinear form to generate different wave structures of solitons for a $(3+1)$ â $€ d i m e n s i o n a l ~$ Boitiâ€Łeonâ€Mannaâ€Pempinelli equation. Mathematical Methods in the Applied Sciences, 2019, 42, 6277-6283. ${ }^{1.2}$
The Hirotaâ€ $€^{T M}$ s direct method and the tanhâ€"coth method for multiple-soliton solutions of the Sawadaâ€"Koteraâ€"Ito seventh-order equation. Applied Mathematics and Computation, 2008, 199, 133-138. 1.4

121
overirow= scroil xinins:xocs= ntup://wwww.ensevier.com/xinilxocs/auta
xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"

A comparison between Adomian decomposition method and Taylor series method in the series
solutions. Applied Mathematics and Computation, 1998, 97, 37-44.
1.4

An efficient algorithm to construct multi-soliton rational solutions of the $(2+1)$-dimensional KdV equation with variable coefficients. Applied Mathematics and Computation, 2018, 321, 282-289.

A computational approach to soliton solutions of the Kadomtsevâ $€^{\prime \prime}$ Petviashvili equation. Applied
Mathematics and Computation, 2001, 123, 205-217.

Compactons, solitons and periodic solutions for some forms of nonlinear Kleinấ "Gordon equations.
46 Chaos, Solitons and Fractals, 2006, 28, 1005-1013.
2.5

105

$$
\begin{aligned}
& \text { The variational iteration method for solving linear and nonlinear systems of PDEs. Computers and } \\
& \text { Mathematics With Applications, 2007, 54, 895-902. }
\end{aligned}
$$

The decomposition method applied to systems of partial differential equations and to the reactionấ "diffusion Brusselator model. Applied Mathematics and Computation, 2000, 110, 251-264.
1.4

103

New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton
2.7

102
solutions. Nonlinear Dynamics, 2019, 97, 83-94.

The numerical solution of sixth-order boundary value problems by the modified decomposition
method. Applied Mathematics and Computation, 2001, 118, 311-325.
1.4

101

New solitary wave solutions to the modified forms of Degasperisâ€"Procesi and Camassaâ€"Holm
equations. Applied Mathematics and Computation, 2007, 186, 130-141.
1.4

100

Optical soliton solutions to the generalized nonautonomous nonlinear SchrÃ \boldsymbol{f} dinger equations in optical fibers via the sine-Gordon expansion method. Optik, 2020, 208, 164132.

Its dimensionally reduced equations. Physica Scripta, 2018, 93, 075203.

55	A new $(3+1)$-dimensional generalized Kadomtsevâ€"Petviashvili equation. Nonlinear Dynamics, 2016, 84, 1107-1112.	2.7	96
56	The numerical solution of fifth-order boundary value problems by the decomposition method. Journal of Computational and Applied Mathematics, 2001, 136, 259-270.	1.1	95
57	The variational iteration method for solving two forms of Blasius equation on a half-infinite domain. Applied Mathematics and Computation, 2007, 188, 485-491.	1.4	95
58	Solving coupled Laneâ€"Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2014, 52, 255-267.	0.7	95
59	Bright â€" dark optical solitons for SchrÃๆdinger-Hirota equation with variable coefficients. Optik, 2019, 179, 479-484.	1.4	95
60	The tanh method for travelling wave solutions to the Zhiberâ€"Shabat equation and other related equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 584-592.	1.7	93
61	Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 491-495.	1.7	93
62	A new integrable ($\$ \$ 3+1 \$ \$ 3+1$)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dynamics, 2016, 83, 1529-1534.	2.7	93
63	The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Computers and Mathematics With Applications, 2007, 54, 926-932.	1.4	92

The tanh method and the sineấ"cosine method for solving the KP-MEW equation. International Journal
of Computer Mathematics, 2005, 82, 235-246.
65 Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dynamics, 2016, 83, 591-596.
2.7 91
66 PainlevÃ® analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dynamics, 2018, 94, 2469-2477.
2.7 91
67 Exact solutions with solitons and periodic structures for the Zakharovâ $\epsilon^{\text {"Kuznetsov }}(\mathrm{ZK})$ equation and
1.789its modified form. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 597-606.$68 \quad$ A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear
SchrẪdinger equation with variable coefficients in nonlinear optical fibers. Optik, 2019, 180, 917-923.$68 \quad \begin{aligned} & \text { A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear } \\ & \text { SchrẤ } \ddagger \text { dinger equation with variable coefficients in nonlinear optical fibers. Optik, 2019, 180, 917-923. }\end{aligned}$1.489
A (2+1)-dimensional Kadomtsevâ€ EPetviashvili equation with competing dispersion effect: PainlevÃ@ 2.0 89
69 analysis, dynamical behavior and invariant solutions. Results in Physics, 2021, 23, 104043.
2.4 88
A new (3+1)-dimensional Kadomtsevâ€"Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Mathematics and Computers in Simulation, 2021, 187, 505-519. 88
73 Abundant complex wave solutions for the nonautonomous Fokasâ€"Lenells equation in presence of

74 Lie symmetry analysis, exact analytical solutions and dynamics of solitons for $(2+1)$-dimensional NNVequations. Nonlinear Dynamics, 2016, 85, 731-737.

91	The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations. Computers and Mathematics With Applications, 2007, 54, 933-939.	1.4	75
92	General compactons solutions for the focusing branch of the nonlinear dispersive $K(n, n)$ equations in higher-dimensional spaces. Applied Mathematics and Computation, 2002, 133, 213-227.	1.4	74
93	The Hirotaâ $\epsilon^{T M}$ S bilinear method and the tanhâ $€^{\prime \prime}$ coth method for multiple-soliton solutions of the Sawadaâ€"Koteraâ€"Kadomtsevâ $€^{\prime \prime}$ Petviashvili equation. Applied Mathematics and Computation, 2008, 200, 160-166.	1.4	74
94	New (3 \$\$varvec\{+\}\$\$ + 1)-dimensional equations of Burgers type and Sharmaâ€"Tassoâ€"Olver type: multiple-soliton solutions. Nonlinear Dynamics, 2017, 87, 2457-2461.	2.7	73
95	Analytic treatment for variable coefficient fourth-order parabolic partial differential equations. Applied Mathematics and Computation, 2001, 123, 219-227.	1.4	72
96	Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. Chaos, Solitons and Fractals, 2006, 28, 454-462.	2.5	72
97	The tanhâ€"coth and the sech methods for exact solutions of the Jaulentâ€"Miodek equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 85-90.	0.9	72
98	New solitons and periodic wave solutions for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Journal of Electromagnetic Waves and Applications, 2016, 30, 788-794.	1.0	72
99	Analytical solution for the time-dependent Emdenâ $\epsilon^{\text {"F F F }}$ owler type of equations by Adomian decomposition method. Applied Mathematics and Computation, 2005, 166, 638-651.	1.4	71

A two-mode modified KdV equation with multiple soliton solutions. Applied Mathematics Letters, 2017 ,
70, 1-6.

Bright and dark optical solitons for (2+1)-dimensional SchrÃ τ dinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik, 2019, 192, 162948.
1.4

65
Exact Soliton and Kink Solutions for New (3+1)-Dimensional Nonlinear Modified Equations of Wave
Propagation. Open Engineering, 2017, 7, 169-174.
119 Reliable analysis for nonlinear SchrÃণdinger equations with a cubic nonlinearity and a power lawnonlinearity. Mathematical and Computer Modelling, 2006, 43, 178-184.
60
120 Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation. Applied Mathematics and Computation, 2009, 214, 370-373.
1.4
60
1.4 60Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified121 Adomian decomposition method for nonlinear boundary value problems. International Journal ofNon-Linear Mechanics, 2013, 49, 159-169.Exact solutions to nonlinear diffusion equations obtained by the decomposition method. Applied1.459Mathematics and Computation, 2001, 123, 109-122.

Nonlinear variants of the BBM equation with compact and noncompact physical structures. Chaos, Solitons and Fractals, 2005, 26, 767-776.
2.5

59

New solutions of distinct physical structures to high-dimensional nonlinear evolution equations.
Applied Mathematics and Computation, 2008, 196, 363-370.

Optical solitons for nonlinear SchrÃ \mp dinger (NLS) equation in normal dispersive regimes. Optik, 2019,

129 New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations. Chaos, Solitons and Fractals, 2004, 22, 249-260.

Exact solutions of compact and noncompact structures for the KPâ€"BBM equation. Applied

Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations. Physica Scripta, 2010, 81, 035005.

133 \begin{tabular}{l}
Travelling wave solutions for combined and double combined sineâ€"cosine-Gordon equations by the

variable separated ODE method. Applied Mathematics and Computation, 2006, 177, 755-760.

 134

An algorithm based on the variational iteration technique for the Bratu-type and the Laneấ"Emden

problems. Journal of Mathematical Chemistry, 2016, 54, 527-551.
\end{tabular}

The variational iteration method for exact solutions of Laplace equation. Physics Letters, Section A:
138 General, Atomic and Solid State Physics, 2007, 363, 260-262.
0.9

54

Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh
1.4

53
method. Applied Mathematics and Computation, 2006, 182, 283-300.

New sets of solitary wave solutions to the $K d V$, $m K d V$, and the generalized $K d V$ equations.
140 Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 331-339.
1.7

53

Two wave mode higher-order modified KdV equations. International Journal of Numerical Methods
Two wave mode higher-order modified KdV equat
for Heat and Fluid Flow, 2017, 27, 2223-2230.
1.6

53

Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation
2.7

53
with temporal and spatial dispersion. Nonlinear Dynamics, 2020, 101, 581-595.

Two new PainlevÃ@-integrable $(2+1)$ and (3+1)-dimensional $K d V$ equations with constant and

The Modified Adomian Decomposition Method for Solving Linear and Nonlinear Boundary Value
147 Problems of Tenth-order and Twelfth-order. International Journal of Nonlinear Sciences and
0.4

51
Numerical Simulation, 2000, 1, .
148 A comparison study between the modified decomposition method and the traditional methods for
$1.4 \quad 51$ solving nonlinear integral equations. Applied Mathematics and Computation, 2006, 181, 1703-1712.

51

149	Solitary wave solutions for a generalized KdVâ€" $m K d V$ equation with variable coefficients. Mathematics and Computers in Simulation, 2010, 80, 1867-1873.
150	Multiple soliton solutions for the ()-dimensional asymmetric Nizhnikâ€"Novikovâ€"Veselov equation. Nonlinear Analysis: Theory, Methods \& Applications, 2010, 72, 1314-1318.

$2.4 \quad 51$

150 Nonlinear Analysis: Theory, Methods \& Applications, 2010, 72, 1314-1318.
$0.6 \quad 51$

151 A new numerical approach to solve Thomasâ $€^{" F}$ Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus, 2016, 5, 1400.
$1.2 \quad 51$

$$
\begin{aligned}
& \text { The Numerical Solution of Special Fourth-Order Boundary Value Problems by the Modified } \\
& \text { Decomposition Method. International Journal of Computer Mathematics, 2002, 79, 345-356. } \\
& 153 \text { Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers } \\
& \text { equations. Applied Mathematics and Computation, 2008, 204, 817-823. }
\end{aligned}
$$

163 Exact solutions for the ZK-MEW equation by using the tanh and sineâe"cosine methods. Internationa
Journal of Computer Mathematics, 2005, 82, 699-708.

The $(2+1)$ and ($3+1$)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular
164 Soliton Solutions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 173-181.

165	Multiple soliton solutions for $(2+1)$-dimensional Sawada-Kotera and Caudrey-Dodd-Gibbon equations. Mathematical Methods in the Applied Sciences, $2011,34,1580-1586$.	1.2

181	Optical Gaussons for nonlinear logarithmic SchrÃ〒dinger equations via the variational iteration method. Optik, 2019, 180, 414-418.	1.4	44
182	Optical solitons for perturbed Gerdjikovâ€"Ivanov equation. Optik, 2018, 174, 447-451.	1.4	43
183	Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2962-2970.	1.7	42
184	<i> $\mathrm{N}<$ li>-soliton solutions for the Vakhnenko equation and its generalized forms. Physica Scripta, 2010, 82, 065006.	1.2	42
185	Multi-front waves for extended form of modified Kadomtsev-Petviashvili equation. Applied Mathematics and Mechanics (English Edition), 2011, 32, 875-880.	1.9	42
186	A study on a twoâ€wave mode Kadomtsevâ€"Petviashvili equation: conditions for multiple soliton solutions to exist. Mathematical Methods in the Applied Sciences, 2017, 40, 4128-4133.	1.2	42
187	Some applications of the (Gâ€²/G, 1/G)-expansion method to find new exact solutions of NLEEs. European Physical Journal Plus, 2017, 132, 1.	1.2	42
188	Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation. Optik, 2018, 172, 622-627.	1.4	42
189	Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations. Applied Mathematics Letters, 2019, 88, 1-7.	1.5	42
190	A study on nonlinear dispersive partial differential equations of compact and noncompact solutions. Applied Mathematics and Computation, 2003, 135, 399-409.	1.4	41
191	Multiple-soliton solutions for the generalized-dimensional and the generalized-dimensional Ito equations. Applied Mathematics and Computation, 2008, 202, 840-849.	1.4	41
192	Group invariant solutions of (3+1)-dimensional generalized B-type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 065204.	1.2	41
193	The existence of noise terms for systems of inhomogeneous differential and integral equations. Applied Mathematics and Computation, 2003, 146, 81-92.	1.4	40

199 The integrable time-dependent sine-Gordon equation with multiple optical kink solutions. Optik, 2019,182, 605-610.
200A (2+1)-dimensional time-dependent Dateâ€"Jimboâ€"Kashiwaraâ€"Miwa equation: PainlevÃ® integrability and1.440multiple soliton solutions. Computers and Mathematics With Applications, 2020, 79, 1145-1149.
201
Schrã dinger-type models and their traveling wave solutions. Chaos, Solitons and Fractals, 2021, 150,
202 The modified decomposition method applied to unsteady flow of gas through a porous medium. 1.4 39 Applied Mathematics and Computation, 2001, 118, 123-132.
1.4 39203 A study on KdV and Gardner equations with time-dependent coefficients and forcing terms. Applied
204 Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Engineering, 2012, 53,1-5.
205 Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave1.2
206 Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions.Nonlinear Dynamics, 2022, 109, 1929-1934.2.739
207. A new approach to the nonlinear advection problem: An application of the decomposition method. Applied Mathematics and Computation, 1995, 72, 175-181. 2071.438
208 Solutions of compact and noncompact structures for nonlinear Kleinâ€"Gordon-type equation. AppliedMathematics and Computation, 2003, 134, 487-500.
209 Analytic study on nonlinear variants of the RLW and the PHI-four equations. Communications in
Nonlinear Science and Numerical Simulation, 2007, 12, 314-327.1.7380.938
Solitons collision and freak waves in a plasma with Cairns-Tsallis particle distributions. Plasma
Physics and Controlled Fusion, 2015, 57, 125012. 210Bright and dark optical solitons for a new (3+1)-dimensional nonlinear SchrÃ \mp dinger equation. Optik,1.438
2021, 241, 166985.1.237
212 A new generalized fifth-order nonlinear integrable equation. Physica Scripta, 2011, 83, 035003.
1.9 37Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized
213 Boussinesq equation. Ocean Engineering, 2015, 94, 111-115.

The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral
Equation with Discontinuous Kernels Using the CESTAC Method. Mathematics, 2021, 9, 260.

A new fifth-order nonlinear integrable equation: multiple soliton solutions. Physica Scripta, 2011, 83, 015012.
1.2

Multiple kink solutions for two coupled integrable (<mml:math) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50672 Td (xmlns:mml="h

219

systems. Applied Mathematics Letters, 2016, 58, 1-6
220 Interaction of lumps and dark solitons in the Melâ $€^{T M}$ nikov equation. Nonlinear Dynamics, 2018, 92, 2049-2059.

PainlevÃ© analysis for Boitiâ $€$ "Leonâ $€$ "Mannâ̂ $€$ "Pempinelli equation of higher dimensions with
221 time-dependent coefficients: Multiple soliton solutions. Physics Letters, Section A: General, Atomic
$0.9 \quad 36$ and Solid State Physics, 2020, 384, 126310.

222 On the modified Gardner type equation and its time fractional form. Chaos, Solitons and Fractals, 2022, 155, 111694.
$2.5 \quad 36$

Multiple soliton solutions and multiple singular soliton solutions for -dimensional shallow water
223 wave equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2927-2930.

Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients.
Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1122-1126.
$1.7 \quad 35$

Anatomy of modified Kortewegâ e"de Vries equation for studying the modulated envelope structures in
non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions. Physics of Plasmas, 2018, 25, .

The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the -Burger equations. Physica D: Nonlinear Phenomena, 2006, 213, 147-151.
1.3

34
A variety of distinct kinds of multiple soliton solutions for a ($3 \hat{a} € \%+\hat{€} € \%$) â $€$ dimensional nonlinear evolution
equation. Mathematical Methods in the Applied Sciences, 2013, 36, 349-357.
1.2 34Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiple kinksolutions. AEJ - Alexandria Engineering Journal, 2018, 57, 1971-1976.
3.4

34
229 Higher-order Sasaâ€"Satsuma equation: Bright and dark optical solitons. Optik, 2021, 243, 167421.1.434Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities.Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 904-909.1.733Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions. Journal of the

On short-range pulse propagation described by $(2+1)$-dimensional SchrÃ $\boldsymbol{\tau}$ dinger's hyperbolic equation
A study on a boundary-layer equation arising in an incompressible fluid. Applied Mathematics and
Computation, 1997, 87, 199-204.

The Coleâ€"Hopf transformation and multiple soliton solutions for the integrable sixth-order
238 Drinfeldâ $€$ "Sokolovâ $\epsilon^{\prime \prime}$ Satsumaâ $€$ "Hirota equation. Applied Mathematics and Computation, 2009, 207, 31.4

239 Negativeâ€order modified KdV equations: multiple soliton and multiple singular soliton solutions.
Mathematical Methods in the Applied Sciences, 2016, 39, 661-667.
1.2

A Two-Mode Burgers Equation of Weak Shock Waves in a Fluid: Multiple Kink Solutions and Other
Exact Solutions. International Journal of Applied and Computational Mathematics, 2017, 3, 3977-3985.
0.9

31

$$
241 \text { A variety of optical solitons for nonlinear SchrÃ } \operatorname{l} \text { dinger equation with detuning term by the }
$$

variational iteration method. Optik, 2019, 196, 163169.
1.4

31

243 Variants of the generalized fifth-order KdV equation with compact and noncompact structures.
243 Chaos, Solitons and Fractals, 2004, 21, 579-589.
2.5
30

Exact solutions with compact and noncompact structures for the one-dimensional generalized
244 Benjaminâ€"Bonaâ€"Mahony equation. Communications in Nonlinear Science and Numerical Simulation,
1.7

30 2005, 10, 855-867.

245 A new ($2+1$)-dimensional Kortewegâ $\epsilon^{\prime \prime}$ de Vries equation and its extension to a new ($3+1$)-dimensional
Kadomtsevâ€"Petviashvili equation. Physica Scripta, 2011, 84, 035010.
246 On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions. Physics of Plasmas, 2017, 24, .
0.7

30

> A new nonlinear integrable fifth-order equation: multiple soliton solutions with unusual phase shifts. Physica Scripta, 2018, 93, 115201.
1.2

New (3â $\left.€^{-}+a \hat{€^{-}} 1\right)$-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent
248 coefficients: PainlevÃ© integrability. Physics Letters, Section A: General, Atomic and Solid State Physics,
0.9 2020, 384, 126787.

249 | Multiple-soliton solutions for coupled KdV and coupled KP systems. Canadian Journal of Physics, |
| :--- |
| $2009,87,1227-1232$. |

Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations. Physica Scripta,
250 2014, 89, 095206.
1.2

29

The variational iteration method for solving linear and nonlinear Volterra integral and
integro-differential equations. International Journal of Computer Mathematics, 2010, 87, 1131-1141.
1.0

28
253
254

> On soliton solutions for the Fitzhughâ€"Nagumo equation with time-dependent coefficients. Applied Mathematical Modelling, 2013, 37, 3821-3828.
2.2

28

Traveling wave solutions for fifth-order $K d V$ type equations with time-dependent coefficients.
Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 404-408.
1.7

28

255 A construction of compact and noncompact solutions for nonlinear dispersive equations of even
1.4
order. Applied Mathematics and Computation, 2003, 135, 411-424.

Nonlinear variants of KdV and KP equations with compactons, solitons and periodic solutions.
Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 451-463.
1.7

27

257	New solitary wave and periodic wave solutions to the $(2+1)$-dimensional Nizhnikâ $€$ "Novikovâ $€$ "Veselov system. Applied Mathematics and Computation, 2007, 187, 1584-1591.	1.4	27
258	Multiple soliton solutions and multiple singular soliton solutions for the (3+1)-dimensional Burgers equations. Applied Mathematics and Computation, 2008, 204, 942-948.	1.4	27
259	A KdV6 hierarchy: Integrable members with distinct dispersion relations. Applied Mathematics Letters, 2015, 45, 86-92.	1.5	27
260	Exact wave solutions for the nonlinear time fractional Sharmaâ€"Tassoâ€"Olver equation and the fractional Kleinấ"Gordon equation in mathematical physics. Optical and Quantum Electronics, 2018, 50, 1 .	1.5	27
261	High-order breathers, lumps, and semi-rational solutions to the $(2+1)$-dimensional Hirotaâ€"Satsumaâ€"Ito equation. Physica Scripta, 2019, 94, 075203.	1.2	27
262	Higher dimensional nonlinear SchrÃๆdinger equations in anomalous dispersion and normal dispersive regimes: Bright and dark optical solitons. Optik, 2020, 222, 165327.	1.4	27
263	The variable separated ODE and the tanh methods for solving the combined and the double combined sinhâ $€$ "cosh-Gordon equations. Applied Mathematics and Computation, 2006, 177, 745-754.	1.4	26
264	Peakons, kinks, compactons and solitary patterns solutions for a family of Camassaấ"Holm equations by using new hyperbolic schemes. Applied Mathematics and Computation, 2006, 182, 412-424.	1.4	26
265	PadÃ© approximants and Adomian decomposition method for solving the Flierlâ $€^{\text {"P Petviashivili equation }}$ and its variants. Applied Mathematics and Computation, 2006, 182, 1812-1818.	1.4	26

266
 N-soliton solutions for the combined KdVâ€"CDG equation and the KdVâ€"Lax equation. Applied Mathematics and Computation, 2008, 203, 402-407.

1.4

26

Completely integrable coupled KdV and coupled KP systems. Communications in Nonlinear Science and
267 Numerical Simulation, 2010, 15, 2828-2835.
1.7

26

A variety of exact travelling wave solutions for the (2+1)-dimensional Boitiâ€"Leonâ€"Pempinelli equation. Applied Mathematics and Computation, 2010, 217, 1484-1490.
271
272

Higher order numeric solutions of the Laneâ $€^{\prime \prime}$ Emden-type equations derived from the multi-stage
271 modified Adomian decomposition method. International Journal of Computer Mathematics, 2017, 94,
1.0

26 197-215.

Bright, dark and Gaussons optical solutions for fourth-order SchrÃ $\boldsymbol{\text { dinger equations with }}$ cubicâ $€$ "quintic and logarithmic nonlinearities. Optik, 2020, 202, 163564.
1.4

26
273

A NOTE ON USING ADOMIAN DECOMPOSITION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS.
Foundations of Physics Letters, 2000, 13, 493-498.
$0.6 \quad 25$

Special types of the nonlinear dispersive Zakharovâ€"Kuznetsov equation with compactons, solitons,
274 and periodic solutions. International Journal of Computer Mathematics, 2004, 81, 1107-1119.
1.0

25

Nonlinear dispersive special type of the Zakharovâ€"Kuznetsov equation ZK(n,n) with compact and
noncompact structures. Applied Mathematics and Computation, 2005, 161,577-590.
1.4

Dark solitons for a combined potential $K d V$ and Schwarzian $K d V$ equations with t-dependent coefficients and forcing term. Applied Mathematics and Computation, 2011, 217, 8846-8851.
1.4

25
277 A reliable study for extensions of the Bratu problem with boundary conditions. Mathematical
277 Methods in the Applied Sciences, 2012, 35, 845-856.
$1.2 \quad 25$

278 Kink solutions for three new fifth order nonlinear equations. Applied Mathematical Modelling, 2014, 38, 110-118.

Negative-order integrable modified KdV equations of higher orders. Nonlinear Dynamics, 2018, 93,
$1371-1376$.
2.7

25

280 Protracted study on a real physical phenomenon generated by media inhomogeneities. Results in Physics, 2021, 31, 104933.
2.0

25

281 Travelling wave solutions for the MKdV-sine-Gordon and the MKdV-sinh-Gordon equations by using a
281 variable separated ODE method. Applied Mathematics and Computation, 2006, 181, 1713-1719.

A (3+1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple
singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1548-1552.
1.4

24
282 singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1548-1552.
The generalized KaupßBoussinesq equation: multiple soliton solutions. Waves in Random and Complex
Media, 2015, 25, 473-481.
$1.6 \quad 24$
Media, 2015, 25, 473-481.

Trial equation method for solving the generalized Fisher equation with variable coefficients. Physics
Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1260-1262.
0.9

24

Two (3+1)-dimensional SchrÃ \mp dinger equations with cubicâ€"quinticâ€"septic nonlinearities: Bright and dark optical solitons. Optik, 2021, 235, 166646.
1.4

24

Compact and noncompact structures in a class of nonlinearly dispersive equations. Mathematics and Computers in Simulation, 2003, 62, 171-189.

The variational iteration method for solving systems of equations of Emdenấe"Fowler type.
International Journal of Computer Mathematics, 2011, 88, 3406-3415.

A study on two extensions of the Bogoyavlenskiiâ€"Schieff equation. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1500-1505.

New $(3+1)$ â€dimensional nonlinear equations with $K d V$ equation constituting its main part: multiple soliton solutions. Mathematical Methods in the Applied Sciences, 2016, 39, 886-891.

PainlevÃ© analysis for new (3 â $€ \%+a ̂ € \%$ \% 1)-dimensional Boitiâ€"Leonâ€"Mannaâ€"Pempinelli equations with constant
292 and time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 1.6 2019, 30, 4259-4266.

293 New extended rational trigonometric methods and applications. Waves in Random and Complex Media, 2020, 30, 5-26.

Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method. Applied Mathematics and Computation, 2006, 174, 289-299.

Regular soliton solutions and singular soliton solutions for the modified Kadomtsevấ " $^{\text {"Petviashvili }}$
295 Regular soliton solutions and singular soliton solutions for the modified
1.422

One and two soliton solutions for the sinhâ $€^{\prime \prime} G o r d o n ~ e q u a t i o n ~ i n ~(1+1), ~(2+1) ~ a n d ~(3+1) ~ d i m e n s i o n s . ~$ Applied Mathematics Letters, 2012, 25, 2354-2358.

Soliton solutions for two (3+1)-dimensional non-integrable KdV-type equations. Mathematical and Computer Modelling, 2012, 55, 1845-1848.

Multiple soliton solutions and other exact solutions for a twoâ€mode KdV equation. Mathematical Methods in the Applied Sciences, 2017, 40, 2277-2283.

Two new PainlevÃ © integrable KdVâ€"Calogeroâ€"Bogoyavlenskiiâe"Schiff (KdV-CBS) equation and new
299 negative-order KdV-CBS equation. Nonlinear Dynamics, 2021, 104, 4311-4315.

Generalized forms of the phi-four equation with compactons, solitons and periodic solutions. Mathematics and Computers in Simulation, 2005, 69, 580-588.

A reliable treatment of the physical structure for the nonlinear equation $K(m, n)$. Applied Mathematics and Computation, 2005, 163, 1081-1095.

New compact and noncompact solutions for two variants of a modified Camassaâ€"Holm equation.
Applied Mathematics and Computation, 2005, 163, 1165-1179.

Explicit travelling wave solutions of variants of the $K(n, n)$ and the $Z K(n, n)$ equations with compact
and noncompact structures. Applied Mathematics and Computation, 2006, 173, 213-230.

Compactons and solitary wave solutions for the Boussinesq wave equation and its generalized form.
Applied Mathematics and Computation, 2006, 182, 529-535.
1.4

21

Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburgấ $E^{\prime \prime}$ Landau equations. Applied Mathematics Letters, 2006, 19, 1007-1012.

A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations. Chaos, Solitons and Fractals, 2007, 33, 703-710.

Solving New Fourthâ€"Order Emdenâ€"Fowler-Type Equations by the Adomian Decomposition Method.
310 International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 21 121-131.

311	On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Modified Adomian Method. Chemical Engineering Communications, 2015, 202, 1081-1088.	1.5	21
312	A modified homotopy perturbation method for singular time dependent Emdenâ€"Fowler equations with boundary conditions. Journal of Mathematical Chemistry, 2016, 54, 918-931.	0.7	21
313	An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models. International Journal of Computer Mathematics, 2016, 93, 1330-1346.	1.0	21

314 A new integrable nonlocal modified KdV equation: Abundant solutions with distinct physical structures. Journal of Ocean Engineering and Science, 2017, 2, 1-4.
$1.7 \quad 21$

315 Multiple-soliton solutions and multiple-singular soliton solutions for two higher-dimensional

A reliable treatment of singular Emdenâ€"Fowler initial value problems and boundary value problems.
Applied Mathematics and Computation, 2011, 217, 10387-10395.

317 The variational iteration method for solving linear and nonlinear ODEs and scientific models with
variable coefficients. Open Engineering, 2014, 4,.

Closed form solutions of complex wave equations via the modified simple equation method. Cogent
0.7

20

The effect of the order of nonlinear dispersive equation on the compact and noncompact solutions.

Multiple soliton solutions for an integrable couplings of the Boussinesq equation. Ocean
Engineering, 2013, 73, 38-40.

326 Gaussons. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1699-1709.
1.6

Two new PainlevÃ©-integrable extended Sakovich equations with (2 â $€ \%+$ â $€ \%$ \% 1) and (3 â $€ \%+a \hat{a} € \%$ \% $)$ dimensions. 1.6 International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1379-1387.

Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the ($2+1$)-D Calogeroâ€"Bogoyavlenskiiâ $\epsilon^{\prime \prime}$ Schiff equation. Heliyon, 2020, 6, e03701.

Compactons, solitons and periodic solutions for variants of the KdV and the KP equations. Applied Mathematics and Computation, 2005, 161, 561-575.

The modified decomposition method for analytic treatment of non-linear integral equations and
330 systems of non-linear integral equations. International Journal of Computer Mathematics, 2005, 82, 1107-1115.

331 Multiple-soliton solutions of the perturbed KdV equation. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3270-3273.

Variants of a $(3+1)$-dimensional generalized BKP equation: Multiple-front waves solutions. Computers and Fluids, 2014, 97, 164-167.

The variational iteration method for solving the Volterra integro-differential forms of the
333 Laneâ€"Emden equations of the first and the second kind. Journal of Mathematical Chemistry, 2014, 52,
0.7 613-626.

334 On the Adomian decomposition method for solving the Stefan problem. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 912-928.

335 Gaussian soliton solutions to a variety of nonlinear logarithmic SchrÃ〒dinger equation. Journal of
335 Electromagnetic Waves and Applications, 2016, 30, 1909-1917.
1.0

18

336 Group invariant solutions of (2+1)-dimensional rdDym equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 115202.

Lump molecules in fluid systems: Kadomtsev-Petviashvili I case. Physics Letters, Section A: General,
Atomic and Solid State Physics, 2022, 424, 127848.

Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation. Applied Mathematics and Computation, 2010, 216, 332-336.

A one-soliton solution of the equation with generalized evolution and time-dependent coefficients.
Nonlinear Analysis: Real World Applications, 2011, 12, 2822-2825.

A new integrable equation that combines the $K d V$ equation with the negativeâ€order $K d V$ equation.
Mathematical Methods in the Applied Sciences, 2018, 41, 80-87.

The tanh method for a reliable treatment of the $K(n, n)$ and the $K P(n, n)$ equations and its variants.
Applied Mathematics and Computation, 2005, 170, 361-379.
1.4

16

Multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation.
Applied Mathematics and Computation, 2008, 203, 277-283.
343
344

> N-soliton solutions for the integrable bidirectional sixth-order Sawadaâ€"Kotera equation. Applied Mathematics and Computation, 2010, 216, $2317-2320$.
$1.4 \quad 16$

Non-integrable variants of Boussinesq equation with two solitons. Applied Mathematics and
1.4

Computation, 2010, 217, 820-825.
16

345 A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons,
1.2
peakons and cuspons. Physica Scripta, 2012, 86, 045501.
$(2+1)$-Dimensional Burgers equations $B E(m+n+1)$: Using the recursion operator. Applied Mathematics and Computation, 2013, 219, 9057-9068.
1.4

16

Kinks and travelling wave solutions for Burgers-like equations. Applied Mathematics Letters, 2014, 38,
347 Kinks and travelling wave solutions for Burgers-like equations. Applied Mathematics Letters, 2014, 38,
$174-179$.
$1.5 \quad 16$

A New Integrable (2+1)-Dimensional Generalized Breaking Soliton Equation: N-Soliton Solutions and Traveling Wave Solutions. Communications in Theoretical Physics, 2016, 66, 385-388.
1.1

Three-dimensional modulational instability of the electrostatic waves in eâ€"pâ€"i magnetoplasmas
$349 \begin{aligned} & \text { Three-dimensional modulational instability of the electrostatic waves in } \\ & \text { having superthermal particles. Physics of Plasmas, 2017, 24, 022126. }\end{aligned}$
$0.7 \quad 16$

Negative-order KdV equations in $(3+1)$ dimensions by using the $K d V$ recursion operator. Waves in Random and Complex Media, 2017, 27, 768-778.

351 Novel highâ€order breathers and rogue waves in the Boussinesq equation via determinants.
351 Mathematical Methods in the Applied Sciences, 2020, 43, 3701-3715.

352 New integrable (2+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Multiple optical kink wave solutions. Optik, 2020, 216, 164640.

353 Lie symmetry analysis for complex soliton solutions of coupled complex short pulse equation.
Mathematical Methods in the Applied Sciences, 2021, 44, 5238-5250.

A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order
Boussinesq-Burgers equation. Filomat, 2017, 31, 831-840.
0.2

16
<i>M < |i>-component nonlinear evolution equations: multiple soliton solutions. Physica Scripta, 2010,
81, 055004.
Multiple and exact soliton solutions of the perturbed Kortewegâ€"de Vries equation of long surface
356 waves in a convective fluid via PainlevÃ® analysis, factorization, and simplest equation methods.
0.8

Physical Review E, 2017, 95, 062211.
357 A new integrable equation combining the modified $K d V$ equation with the negative-order modified KdV
357 equation: multiple soliton solutions and a variety of solitonic solutions. Waves in Random and
1.6

15
Complex Media, 2018, 28, 533-543.
PainlevÃ© analysis for three integrable shallow water waves equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 996-1008.
1.6

15

Two new integrable Kadomtsevâ€"Petviashvili equations with time-dependent coefficients: multiple real
and complex soliton solutions. Waves in Random and Complex Media, 2020, 30, 776-786.
1.6

Computational Method for Reaction Diffusion-Model Arising in a Spherical Catalyst. International Journal of Applied and Computational Mathematics, 2021, $7,1$.
361

Lie symmetry analysis of a stochastic gene evolution in double-chain deoxyribonucleic acid system.
Waves in Random and Complex Media, 2022, 32, 2903-2917.
1.6

15

Equality of partial solutions in the decomposition method for partial differential equations.
362 International Journal of Computer Mathematics, 1997, 65, 293-308.
1.0

14
xmlns:xocs="http:/|www.elsevier.com/xml/xocs/dtd" xmlns:xs="http:/|www.w3.org/2001/XMLSchema"
363 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"
1.5 xmins:tb="http://www.elsevier.com/xmilcommon/table/dtd"

364 Multiple soliton solutions for some (3+1)-dimensional nonlinear models generated by the
1.5 Jaulentâ€"Miodek hierarchy. Applied Mathematics Letters, 2012, 25, 1936-1940.

14
A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage
Adomian decomposition method. Open Engineering, 2014, 5, .
$0.7 \quad 14$
Adomian decomposition method. Open Engineering, 2014, 5, .

Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders. Pramana - Journal of Physics, 2016, 87, 1.
0.9

14
0.9

14
1.0

13
1.4

13

370 Compact and noncompact solutions for nonlinear dispersive variants of the generalized KdV equation. Applied Mathematics and Computation, 2004, 159, 577-588.

371 Analytic study on the generalized fifth-order KdV equation: New solitons and periodic solutions.
371 Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1172-1180.

Soliton solutions for the fifth-order KdV equation and the Kawahara equation with time-dependent coefficients. Physica Scripta, 2010, 82, 035009.
1.2

13
4er
373 Integrability of coupled KdV equations. Open Physics, 2011, 9, . 0.8 13<i>N</i>-soliton solutions for the integrable modified KdV-sine-Gordon equation. Physica Scripta,1.213
379 Some new integrable systems of two-component fifth-order equations. Nonlinear Dynamics, 2017, 87, 2.7 13
1111-1120.
A new trial equation method for finding exact chirped soliton solutions of the quintic derivative380 nonlinear SchrÃๆdinger equation with variable coefficients. Waves in Random and Complex Media,1.613
2017, 27, 153-162.
Soliton solutions through optical fibers for quadraticâ€"cubic nonlinear medium: A complex ansÃtze1.413
approach. Optik, 2021, 229, 166268.
382 Solitary Waves Theory. Nonlinear Physical Science, 2009, , 479-502.0.213
383 Exponential time differencing method for modeling the dissipative rouge waves and breathers in a 1.2 collisional plasma. European Physical Journal Plus, 2021, 136, 1.
384 A NEW (3+1)-DIMENSIONAL KDV EQUATION AND MKDV EQUATION WITH THEIR CORRESPONDING FRACTIONAL FORMS. Fractals, 2022, 30, .$1.8 \quad 13$
385 Generalized Boussinesq type of equations with compactons, solitons and periodic solutions. Applied Mathematics and Computation, 2005, 167, 1162-1178. 1.4 12
386 Kinks and solitons solutions for the generalized KdV equation with two power nonlinearities. AppliedMathematics and Computation, 2006, 183, 1181-1189.
387 Soliton solutions of the dispersive sine-Gordon and the dispersive sinh-Gordon equations with388 with high-order nonlinear terms and time-dependent coefficients. Canadian Journal of Physics, 2011,89, 253-259.
$389(2+1)$-dimensional Kortewegâ€"de Vries (N) equations derived by using the Kortewegấ"de Vries recursion operator. Physica Scripta, 2012, 86, 065007. 1.2 121.412
387 fourth spatial or spatio-temporal derivatives. Physica Scripta, 2011, 84, 065007.$1.2 \quad 12$
Bright and dark solitons for a generalized Korteweg-de Vriesâ€"modified Korteweg-de Vries equation0.412
1.4
(2+1)-Dimensional $m K d V(N)$ equations by the $m K d V$ recursion operator: Multiple soliton and multiple singular soliton solutions. Applied Mathematics and Computation, 2012, 219, 2535-2544. 3901.312
A variety of $(3+1)$-dimensional $m K d V$ equations derived by using the $m K d V$ recursion operator. $391 \quad$ A variety of $(3+1)$-dimensional mKdV equatTwo reliable methods for solving the Volterra integral equation with a weakly singular kernel.1.112Journal of Computational and Applied Mathematics, 2016, 302, 71-80.
Negative-Order KdV and Negative-Order KP Equations: Multiple Soliton Solutions. Proceedings of the
National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 291-296. 0.8 12
393The variational iteration method for solving systems of third-order Emden-Fowler type equations.
Bright and dark envelope optical solitons for a $(2+1)$-dimensional cubic nonlinear SchrÃ 397 dinger
equation. Optik, 2022, 265, 169525.
405 The Volterra integral form of the Laneâ $€^{\prime E}$ Emden equation: new derivations and solution by the Adomiandecomposition method. Journal of Applied Mathematics and Computing, 2015, 47, 365-379.

0

Unsteady three-dimensional laminar flow over a submerged plate in electrically conducting fluid
1.6

11
with applied magnetic field. Waves in Random and Complex Media, 2023, 33, 505-524.

Plasma-waves evolution and propagation modeled by sixth order Ramani and coupled Ramani
1.2

11
equations using symmetry methods. Physica Scripta, 2021, 96, 085213.

A variety of bright and dark optical soliton solutions of an extended higher-order Sasaâ€"Satsuma
equation. Optik, 2021, 247, 167938.
1.4

11

Two Kinds of Multiple Wave Solutions for the Potential YTSF Equation and a Potential YTSF-Type
0.1

11
Equation. Journal of Applied Nonlinear Dynamics, 2012, 1, 51-58.

New hyperbolic schemes for reliable treatment of Boussinesq equation. Physics Letters, Section A:
General, Atomic and Solid State Physics, 2006, 358, 409-413.
415
416

SOLITON SOLUTIONS FOR SEVENTH-ORDER KAWAHARA EQUATION WITH TIME-DEPENDENT COEFFICIENTS. Modern Physics Letters B, 2011, 25, 643-648.
1.0

10

417 New bilinearization, BÃcklund transformation and infinite conservation laws for the KdV6 equation
1.2
with Bell polynomials. Mathematical Methods in the Applied Sciences, 2016, 39, 2716-2721.
10

Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients:
418 multiple real and multiple complex soliton solutions. Waves in Random and Complex Media, 2021, 31,
1.6 867-878.

419 Analytical and numerical treatment to the $(2+1)$-dimensional Date-Jimbo-Kashiwara-Miwa equation.
Nonlinear Engineering, 2021, 10, 187-200.
1.4

Multiple Kink Solutions for the (2+1)-dimensional Sharma--Tasso--Olver and the
$420 \quad$ Sharma--Tasso--Olver--Burgers Equations. Journal of Applied Nonlinear Dynamics, 2013, 2, 95-102.
$0.1 \quad 10$
.1

421 \begin{tabular}{l}
On the numerical solution of the Goursat problem. Applied Mathematics and Computation, 1993, 59

$89-95$.

 $\mathrm{l}^{\text {An analytic study of compacton solutions for variants of Kuramotoâ€"Sivashinsky equation. Applied }}$

Mathematics and Computation, 2004, 148, 571-585.
\end{tabular}

Combined equations of the Burgers hierarchy: multiple kink solutions and multiple singular kink solutions. Physica Scripta, 2010, 82, 025001.
$1.2 \quad 9$

New higher-dimensional fifth-order nonlinear equations with multiple soliton solutions. Physica
$1.2 \quad 9$
Scripta, $2011,84,025007$.

Envelope solitons for generalized forms of the phi-four equation. Journal of King Saud University Science, 2013, 25, 129-133.
1.6

9

Solving Systems of Fourth-Order Emdenâ€"Fowler Type Equations by the Variational Iteration Method.
9

430 Gaussian solitary waves for the logarithmic-BBM and the logarithmic-TRLW equations. Journal of Mathematical Chemistry, 2016, 54, 252-268.
433 A variety of negative-order integrable KdV equations of higher orders. Waves in Random and Complex

SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY 434 A MODIFIED ANSÃ,,TZ WITH VARIABLE COEFFICIENTS. Journal of Applied Analysis and Computation, 2022,
Couplings of a fifth order nonlinear integrable equation: Multiple kink solutions. Computers and
Fluids, 2013, 84, 97-99.

436 Multiple soliton solutions for the Whithamâ€"Broerâ€"Kaup model in the shallow water small-amplitude
ON SOLLUTIONS OF BOUNDARY VALUE PROBLEM FOR FOURTH-ORDER BEAM EQUATIONS. Mathematical
Modelling and Analysis, 2016, 21, 304-318.

438 New (3+1)-dimensional integrable fourth-order nonlinear equation: lumps and multiple soliton solutions. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1664-1673.
1.6

8

439	Abundant Solutions of Distinct Physical Structures for Three Shallow Water Waves Models. Discontinuity, Nonlinearity, and Complexity, 2017, 6, 295-304.
440	Compact structures for variants of the generalized KdV and the generalized KP equations. Applied Mathematics and Computation, 2004, 149, 103-117.
441	A variety of exact wave solutions with distinct physical structures for the Boussinesq system. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 376-390.
442	New kinds of solitons and periodic solutions to the generalized KdV equation. Numerical Methods for Partial Differential Equations, 2007, 23, 247-255.
443	Analytic study on the one and two spatial dimensional potential KdV equations. Chaos, Solitons and Fractals, 2008, 36, 175-181.

Four $(2+1)$-dimensional integrable extensions of the Kadomtsevâ€"Petviashvili equation. Applied Mathematics and Computation, 2010, 215, 3631-3644.
1.4

7

Nonsingular complexiton solutions for two higher-dimensional fifth-order nonlinear integrable
$1.2 \quad 7$ equations. Physica Scripta, 2013, 88, 025001.
A variational approach for a class of nonlocal elliptic boundary value problems. Journal of

New (3+1)-dimensional nonlinear evolution equation: multiple soliton solutions. Open Engineering,
2014, 4, .0.7

Closed form traveling wave solutions of non-linear fractional evolution equations through the modified simple equation method. Thermal Science, 2018, 22, 341-352.

On the numerical solution of by a class of nonlinear trapezoidal formulas. International Journal of

455	A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. International Journal of Biomathematics, 2014, 07, 1450020.	1.5	6
456	The variational iteration method for solving the Volterra integro-differential forms of the Lane-Emden and the Emden-Fowler problems with initial and boundary value conditions. Open Engineering, 2015, 5, .	0.7	6
457	An efficient approach for solving second-order nonlinear differential equation with Neumann boundary conditions. Journal of Mathematical Chemistry, 2015, 53, 767-790.	0.7	6
458	Numerical solutions of fourth-order Volterra integro-differential equations by the Greenâ $€^{\mathrm{TM}}$ s function and decomposition method. Mathematical Sciences, 2016, 10, 159-166.	1.0	6
459	New integrable Vakhnenkoâ€"Parkes (VP) equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4598-4606.	1.6	6

```
A COMPLETELY INTEGRABLE SYSTEM OF COUPLED MODIFIED KdV EQUATIONS. Journal of Nonlinear
Optical Physics and Materials, 2010, 19, 145-151.
```

```
4 6 9 ~ V o l t e r r a ~ I n t e g r o - D i f f e r e n t i a l ~ E q u a t i o n s . ~ , ~ 2 0 1 1 , ~ , ~ 1 7 5 - 2 1 2 . ~
```

Solving nonlocal initial-boundary value problems for the Lotkaâ€"von Foerster model. Applied
1.4

5
Mathematics and Computation, 2013, 225, 7-15.

A coupled Ramani equation: multiple soliton solutions. Journal of Mathematical Chemistry, 2014, 52,
0.7

2133-2140.

472 Some classification of non-commutative Integrable Systems. Nonlinear Dynamics, 2017, 88, 1487-1492.
$2.7 \quad 5$
Numerical Investigation of the Beam-Type Nano-electrostatic Actuator Model by Using the Birkhoff
473 Interpolation Method. International Journal of Applied and Computational Mathematics, 2017, 3,
$0.9 \quad 5$
129-146.
474 The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves. Waves in Random and Complex Media, 0, , 1-15.
1.6
5
$475 \begin{aligned} & \text { Analytical approximations of three-point generalized Thomasâ€"Fermi and Laneâ€"Emdenâ€"Fowler type } \\ & \text { equations. European Physical Journal Plus, 2022, 137, } 1 .\end{aligned}$
$1.2 \quad 5$
476 The decomposition method For solving higher dimensional Initial boundary value problems of variable
coefficients. International Journal of Computer Mathematics, 2000, 76, 159-172.
MULTIPLE SOLITON SOLUTIONS FOR THREE SYSTEMS OF BROERâ€"KAUPâ€"KUPERSHMIDT EQUATIONS
477 DESCRIBING NONLINEAR AND DISPERSIVE LONG GRAVITY WAVES. Modern Physics Letters B, 2012, 26,
1.0 1250126.
1.0
4

Multiple soliton solutions for the integrable couplings of the KdV and the KP equations. Open
Physics, 2013, 11, .
0.8

4

> A variational approach to a BVP arising in the modelling of electrically conducting solids. Open
> Engineering, 2013,3,106-112.
$0.7 \quad 4$

A seventh-order member of KdV6 hierarchy and its (2+1)-dimensional extensions. Modern Physics
Letters B, 2016, 30, 1650198.
1.0

4

| |
| :--- | :--- |

481 Lie symmetry analysis and soliton so
1.6

482 Nonlinear Partial Differential Equations. Nonlinear Physical Science, 2009, , 285-351.
0.2

The singular manifold method for a class of fractional-order diffusion equations. Waves in Random
1.6
and Complex Media, 0, , 1-12.

The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation. European
Physical Journal Plus, 2022, 137, 1.
1.2

4
Effect of nonlinearity of the middle term of nonlinear dispersive equations on physical structures.
Applied Mathematics and Computation, 2004, 159, 539-558.

$488 \quad$| Multiple kink solutions for M-component Burgers equations in $(1+1)$-dimensions and (2+1)-dimensions. |
| :--- |
| Applied Mathematics and Computation, 2010, 217, 3564-3570. |

$489 \quad$ Volterra-Fredholm Integro-Differential Equations. , 2011, 285-309.

490 One and two soliton solutions for seventh-order Caudrey-Dodd-Gibbon and Caudrey-Dodd-Gibbon-KP equations. Open Physics, 2012, 10, .
A reliable iterative method for solving the time-dependent singular Emden-Fowler equations. Open
491 Engineering, 2013, 3, $0.7 \quad 3$
1.2 3
A variety of $(3+1)$ â€dimensional Burgers equations derived by using the Burgers recursion operator.
Mathematical Methods in the Applied Sciences, 2015, 38, 2642-2649.
0.93
493 A variety of $(3+1)$-dimensional $K d V$ equations derived by using the $K d V$ recursion operator. Indian Journal of Physics, 2016, 90, 577-582.1.63An extended time-dependent KdV6 equation. International Journal of Numerical Methods for Heat andFluid Flow, 2019, 29, 4205-4212.
Simulation of large deflections of a flexible cantilever beam fabricated from functionally graded0.2Differential Equations, 2020, 10, 287.with constant and time-dependent coefficients. Optik, 2020, 219, 165003.

Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition
497 method. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23, 20-28.

498 New Gaussian solitary wave solutions in nanofibers. Waves in Random and Complex Media, 0, , 1-13.
1.6

3

$$
\begin{aligned}
& \text { Soliton Solutions for the Modified KdV6, Modified }(2+1) \text {-dimensional Boussinesq, and } \\
& (3+1) \text {-dimensional KdV Equations. Journal of Applied Nonlinear Dynamics, 2014, 3, 95-104. }
\end{aligned}
$$

$0.1 \quad 3$

An Efficient Method for Solving the Generalized Thomasâ $€$ "Fermi and Laneâ $€$ "Emdenâ $€$ "Fowler Type
500 Equations with Nonlocal Integral Type Boundary Conditions. International Journal of Applied and
0.93

Computational Mathematics, 2022, 8, 1.

501 Symmetries and dynamic wave solutions for (3+1)-dimensional potential
Calogeroâ€"Bogoyavlenskiiâ€"Schiff equation. Journal of Ocean Engineering and Science, 2022, , .
1.7

3

Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders. Waves in Random and Complex Media, 0, , 1-29.

Multiple-soliton solutions for the Lax seventh-order equation. Applied Mathematics and Computation,
507 Multiple soliton solutions and multiple singular soliton solutions of the modified KdV equation 1.2 with first-order correction. Physica Scripta, 2010, 82, 055006.

2

508 Bright and dark soliton solutions for a new fifth-order nonlinear integrable equation with perturbation terms. Journal of King Saud University - Science, 2012, 24, 295-299.
1.6

513	Compactons structures for fifth-order KdV like equations in higher dimensions. Applied Mathematics and Computation, 2002, 130, 425-440.	1.4	1
514	Compacton solutions and nonlinear dispersion. Applied Mathematics and Computation, 2003, 142, 495-509.	1.4	1
515	Compactons structures for specific nonlinear dispersive equations. Applied Mathematics and Computation, 2004, 150, 399-407.	1.4	1
516	Multiple soliton solutions and multiple singular soliton solutions for two integrable systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6879-6886.	0.9	1
517	Soliton solutions of the KdV equation with higher-order corrections. Physica Scripta, 2010, 82, 045005.	1.2	1

519 Introductory Concepts of Integral Equations. , 2011, , 33-63. 1

523 Comment on â€œA note on a study on an integrable system of coupled KdV equationsâ€: Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 2200-2201.

Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Open Engineering, 2013, 3, .

The successive differentiation computer-assisted method for solving well-known scientific and
525 engineering models. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28,
$1.6 \quad 1$
2862-2873.
Comment on â€œSoliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in
526 a magnetized two-ion-temperature dusty plasmaâ $€ \cdot[$ Phys. Plasmas 21, 073709 (2014)]. Physics of Plasmas, 2018, 25, .

527 | Construction of a hierarchy of negativeấorder integrable Burgers equations of higher orders. |
| :--- |
| Mathematical Methods in the Applied Sciences, 2019, 42, 1553-1560. |

528 Repeated application of the recursion operator for a new hierarchy of negative-order integrable KdV
equations. Waves in Random and Complex Media, 2020, 30, 300-307.

529 Burgers, Fisher and Related Equations. Nonlinear Physical Science, 2009, , 665-681.

Performance of hybrid two-phase nanofluid neighboring to permeable plates exposed to elevated temperatures. Waves in Random and Complex Media, 0, , 1-25.

The nonlocal potential transformation method for solitary wave packets of a shock-breaking
dynamics system. Waves in Random and Complex Media, 0, , 1-14.

532 Boussinesq, Klein-Gordon and Liouville Equations. Nonlinear Physical Science, 2009, , 639-663.

Two systems of two-component integrable equations: Multiple soliton solutions and multiple
533 singular soliton solutions. Applied Mathematics and Computation, 2009, 207, 397-405.

Analytic Treatment for (2+1)-Dimensional Kortweg-de Vries-Like and Kadomtsev-Petviashvili-Like
Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 1101-1105.
0.7

Adomian Decomposition Method Applied to Non-linear Evolution Equations in Soliton Theory. , 2012, , 1-12.

An eighth-order KdV-type equation in $(1+1)$ and $(2+1)$ dimensions: multiple soliton solutions. Open Physics, 2013, 11, .

Unsteady Rheology of MHD Newtonian Material with Soret and Dufours Effects. International
537 Journal of Applied and Computational Mathematics, 2017, 3, 1299-1311.
0.9

0

538 The Family of the KdV Equations. Nonlinear Physical Science, 2009, , 503-556.
0.2

539 Laplaceâ $€^{T M}$ S Equation. Nonlinear Physical Science, 2009, , 237-284.
0.2

0

