Takehiro G Kusakabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6379403/publications.pdf

Version: 2024-02-01

93 papers 4,273 citations

35 h-index 62 g-index

98 all docs 98 docs citations 98 times ranked 3434 citing authors

#	Article	IF	CITATIONS
1	The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681.	21.4	535
2	Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nature Genetics, 2005, 37, 282-288.	21.4	367
3	COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. Journal of Clinical Investigation, 2011, 121, 2013-2024.	8.2	343
4	Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene, 2002, 287, 83-96.	2.2	133
5	Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Letters, 2001, 506, 69-72.	2.8	106
6	The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Research, 2010, 20, 1459-1468.	5 . 5	105
7	The pre-vertebrate origins of neurogenic placodes. Nature, 2015, 524, 462-465.	27.8	102
8	Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. Journal of Clinical Investigation, 2010, 120, 791-802.	8.2	102
9	Gene Expression Profiles in Tadpole Larvae of Ciona intestinalis. Developmental Biology, 2002, 242, 188-203.	2.0	99
10	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
11	Glutamatergic networks in the <i>Ciona intestinalis</i> larva. Journal of Comparative Neurology, 2008, 508, 249-263.	1.6	87
12	Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature, 2011, 469, 525-528.	27.8	85
13	Timing of initiation of muscle-specific gene expression in the ascidian embryo precedes that of developmental fate restriction in lineage cells. Development Growth and Differentiation, 1995, 37, 319-327.	1.5	83
14	Tube formation by complex cellular processes in Ciona intestinalis notochord. Developmental Biology, 2009, 330, 237-249.	2.0	76
15	Constrained vertebrate evolution by pleiotropic genes. Nature Ecology and Evolution, 2017, 1, 1722-1730.	7.8	72
16	Identification of neuron-specific promoters in Ciona intestinalis. Genesis, 2004, 39, 130-140.	1.6	65
17	Coexpression and Promoter Function in Two Muscle Actin Gene Complexes of Different Structural Organization in the Ascidian Halocynthia roretzi. Developmental Biology, 1995, 169, 461-472.	2.0	59
18	Structure, expression, and cluster organization of genes encoding gonadotropin-releasing hormone receptors found in the neural complex of the ascidian Ciona intestinalis. Gene, 2003, 322, 77-84.	2.2	59

#	Article	IF	Citations
19	Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. Journal of Comparative Neurology, 2008, 509, 88-102.	1.6	58
20	Primary Structure and Differential Gene Expression of Three Membrane Forms of Guanylyl Cyclase Found in the Eye of the TeleostOryzias latipes. Journal of Biological Chemistry, 1997, 272, 23407-23417.	3.4	54
21	Simple Motor System of the Ascidian Larva: Neuronal Complex Comprising Putative Cholinergic and GABAergic/Glycinergic Neurons. Zoological Science, 2010, 27, 181-190.	0.7	53
22	Origin of the vertebrate visual cycle: Genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate. Journal of Comparative Neurology, 2003, 460, 180-190.	1.6	52
23	Tunicate muscle actin genes. Journal of Molecular Biology, 1992, 227, 955-960.	4.2	51
24	Mechanism of an Evolutionary Change in Muscle Cell Differentiation in Ascidians with Different Modes of Development. Developmental Biology, 1996, 174, 379-392.	2.0	50
25	Evolution of Chordate Actin Genes: Evidence from Genomic Organization and Amino Acid Sequences. Journal of Molecular Evolution, 1997, 44, 289-298.	1.8	49
26	Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biology, 2012, 10, 45.	3.8	48
27	Computational discovery of DNA motifs associated with cell type-specific gene expression in Ciona. Developmental Biology, 2004, 276, 563-580.	2.0	47
28	Origin of the vertebrate visual cycle: II. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate. Vision Research, 2003, 43, 3045-3053.	1.4	46
29	Functional Diversity of Signaling Pathways through G Protein–Coupled Receptor Heterodimerization with a Species-Specific Orphan Receptor Subtype. Molecular Biology and Evolution, 2010, 27, 1097-1106.	8.9	46
30	Short Upstream Sequences Associated with the Muscle-Specific Expression of an Actin Gene in Ascidian Embryos. Developmental Biology, 1994, 166, 763-769.	2.0	45
31	Introduction and Expression of Recombinant Genes in Ascidian Embryos. Development Growth and Differentiation, 1992, 34, 627-634.	1.5	42
32	A Conserved Non-Reproductive GnRH System in Chordates. PLoS ONE, 2012, 7, e41955.	2.5	41
33	Temporal and Spatial Expression of a Muscle Actin Gene during Embryogenesis of the Ascidian Halocynthia roretzi. (Specific gene expression/a muscle actin gene/muscle lineage cells/ascidian) Tj ETQq1 1 (0.7843 15 4 rgB ⁻	Γ/ Φ oerlock 1
34	Evolution of the ascidian anural larva: evidence from embryos and molecules. Molecular Biology and Evolution, 1999, 16, 646-654.	8.9	40
35	Targeted knockdown of an opsin gene inhibits the swimming behaviour photoresponse of ascidian larvae. Neuroscience Letters, 2003, 347, 167-170.	2.1	39
36	Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Developmental Biology, 2016, 420, 178-185.	2.0	39

#	Article	IF	Citations
37	Evolution of Constrained Gonadotropin-releasing Hormone Ligand Conformation and Receptor Selectivity. Journal of Biological Chemistry, 2005, 280, 38569-38575.	3.4	37
38	Cell type and function of neurons in the ascidian nervous system. Development Growth and Differentiation, 2009, 51, 207-220.	1.5	35
39	Photoreceptive Systems in Ascidiansâ€. Photochemistry and Photobiology, 2007, 83, 248-252.	2.5	34
40	Evolution and the origin of the visual retinoid cycle in vertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2897-2910.	4.0	34
41	Regulatory cocktail for dopaminergic neurons in a protovertebrate identified by whole-embryo single-cell transcriptomics. Genes and Development, 2018, 32, 1297-1302.	5.9	34
42	Nonreproductive role of gonadotropinâ€releasing hormone in the control of ascidian metamorphosis. Developmental Dynamics, 2014, 243, 1524-1535.	1.8	32
43	Cis <i>-</i> Acting Transcriptional Repression Establishes a Sharp Boundary in Chordate Embryos. Science, 2012, 337, 964-967.	12.6	31
44	Evidence for Differential Regulation of GnRH Signaling via Heterodimerization among GnRH Receptor Paralogs in the Protochordate, Ciona intestinalis. Endocrinology, 2012, 153, 1841-1849.	2.8	29
45	Evolutionary steps involving counterion displacement in a tunicate opsin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6028-6033.	7.1	29
46	Tunic Cuticular Protrusions in Ascidians (Chordata, Tunicata): A Perspective of Their Character-State Distribution. Zoological Science, 1997, 14, 683-689.	0.7	28
47	Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: Implications for conserved mechanisms of chordate development. Development Genes and Evolution, 1997, 207, 203-215.	0.9	28
48	Tandem Organization of Medaka Fish Soluble Guanylyl Cyclase $\hat{l}\pm 1$ and \hat{l}^21 Subunit Genes. Journal of Biological Chemistry, 1999, 274, 18567-18573.	3.4	28
49	DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Research, 2006, 34, D552-D555.	14.5	28
50	Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae. Gene, 1999, 227, 1-10.	2.2	26
51	The Guanylyl Cyclase Family in Medaka Fish Oryzias latipes. Zoological Science, 2000, 17, 131-140.	0.7	25
52	Decodingcis-Regulatory Systems in Ascidians. Zoological Science, 2005, 22, 129-146.	0.7	25
53	Molecular cloning of cDNAs and expression of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase from medaka fish Oryzias latipes. FEBS Journal, 1998, 253, 42-48.	0.2	23
54	Cell lineage and <i>cis</i> â€regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian <i>Ciona intestinalis</i> Development Growth and Differentiation, 2012, 54, 177-186.	1.5	23

#	Article	IF	CITATIONS
55	Expression of larval-type muscle actin-encoding genes in the ascidian Halocynthia roretzi. Gene, 1995, 153, 215-218.	2.2	22
56	Ascidian Actin Genes: Developmental Regulation of Gene Expression and Molecular Evolution. Zoological Science, 1997, 14, 707-718.	0.7	21
57	Sequence Analysis of cDNA and Genomic DNA, and mRNA Expression of the Medaka Fish Homolog of Mammalian Guanylyl Cyclase. Journal of Biochemistry, 1999, 125, 476-486.	1.7	21
58	Localization of mRNAs encoding \hat{l}_{\pm} and \hat{l}_{\pm}^2 subunits of soluble guanylyl cyclase in the brain of rainbow trout: comparison with the distribution of neuronal nitric oxide synthase. Brain Research, 2004, 1013, 13-29.	2,2	19
59	Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues. Gene Expression Patterns, 2013, 13, 43-50.	0.8	19
60	Predominant expression of a cytoskeletal actin gene in mesenchyme cells during embryogenesis of the ascidian Halocynthia roretzi. Development Growth and Differentiation, 1996, 38, 401-411.	1.5	18
61	Central Nervous System-specific Expression of G Protein \hat{l}_{\pm} Subunits in the Ascidian Ciona intestinalis. Zoological Science, 2002, 19, 1079-1088.	0.7	18
62	Photoreceptors and olfactory cells express the same retinal guanylyl cyclase isoform in medaka: visualization by promoter transgenics1. FEBS Letters, 2000, 483, 143-148.	2.8	17
63	Cellular identity and Ca2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Scientific Reports, 2020, 10, 18590.	3.3	16
64	Origin of the Vertebrate Visual Cycle: III. Distinct Distribution of RPE65 and β-carotene 15,15′-Monooxygenase Homologues in Ciona intestinalisâ€. Photochemistry and Photobiology, 2006, 82, 1468.	2.5	16
65	Transcriptional co-regulation of evolutionarily conserved microRNA/cone opsin gene pairs: Implications for photoreceptor subtype specification. Developmental Biology, 2014, 392, 117-129.	2.0	15
66	Origin of the Vertebrate Visual Cycle: III. Distinct Distribution of RPE65 and β-carotene 15,15'-Monooxygenase Homologues in Ciona intestinalis. Photochemistry and Photobiology, 2006, 82, 1468-1474.	2.5	14
67	Origin of the Vertebrate Visual Cycleâ€. Photochemistry and Photobiology, 2007, 83, 242-247.	2.5	14
68	Genome-wide identification and characterization of transcription start sites and promoters in the tunicateCiona intestinalis. Genome Research, 2016, 26, 140-150.	5.5	13
69	Distinctive Expression Patterns of Hedgehog Pathway Genes in the <i>Ciona intestinalis</i> Larva: Implications for a Role of Hedgehog Signaling in Postembryonic Development and Chordate Evolution. Zoological Science, 2010, 27, 84-90.	0.7	12
70	Functions of a GnRH receptor heterodimer of the ascidian, <i>Ciona intestinalis </i> Hungarica, 2008, 59, 241-243.	0.7	9
71	A cis -regulatory element essential for photoreceptor cell-specific expression of a medaka retinal guanylyl cyclase gene. Development Genes and Evolution, 2001, 211, 145-149.	0.9	8
72	Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8

#	Article	IF	CITATIONS
7 3	Markov Chain-based Promoter Structure Modeling for Tissue-specific Expression Pattern Prediction. DNA Research, 2008, 15, 3-11.	3.4	7
74	Profiling ascidian promoters as the primordial type of vertebrate promoter. BMC Genomics, 2011, 12, S7.	2.8	7
7 5	Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Developmental Biology, 2019, 445, 245-255.	2.0	7
76	A single motor neuron determines the rhythm of early motor behavior in <i>Ciona</i> . Science Advances, 2021, 7, eabl6053.	10.3	7
77	Identifying Vertebrate Brain Prototypes in Deuterostomes. Diversity and Commonality in Animals, 2017, , 153-186.	0.7	6
78	Comparative genomics identifies a <i>cis</i> àêregulatory module that activates transcription in specific subsets of neurons in <i>Ciona intestinalis</i> larvae. Development Growth and Differentiation, 2007, 49, 657-667.	1.5	5
79	Cross-validated methods for promoter/transcription start site mapping in SL trans-spliced genes, established using the Ciona intestinalis troponin I gene. Nucleic Acids Research, 2011, 39, 2638-2648.	14.5	5
80	Evolution of Developmental Programs for the Midline Structures in Chordates: Insights From Gene Regulation in the Floor Plate and Hypochord Homologues of Ciona Embryos. Frontiers in Cell and Developmental Biology, 2021, 9, 704367.	3.7	5
81	The Use of cis-Regulatory DNAs as Molecular Tools. Advances in Experimental Medicine and Biology, 2018, 1029, 49-68.	1.6	2
82	The complete cell lineage and MAPK- and Otx-dependent specification of the dopaminergic cells in the <i>Ciona</i> brain. Development (Cambridge), 2021, 148, .	2.5	2
83	Genome Structure, Functional Genomics, and Proteomics in Ascidians. , 2012, , 87-132.		2
84	Regulation and Evolution of Genes in Ascidians. Zoological Science, 2005, 22, 1372-1372.	0.7	0
85	2P318 Origin of vertebrate photoreceptor: ON-type and OFF-type photoreceptors in ascidian larva(42.) Tj ETQq1 Butsuri, 2006, 46, S375.	1 0.78431 0.1	.4 rgBT /Cve O
86	2P319 CNG channels in the ascidian Ciona intestinalis: Insights into the origin and evolution of vertebrate CNG channels(42. Sensory signal transduction,Poster Session,Abstract,Meeting Program) Tj ETQq0 0 0	n g.B T/Ov€	erbock 10 Tf
87	1P201 Molecular genetic characterization of mechanosensory systems in the simple chordate Ciona intestinalis(Neurons and sensory system,Poster Presentations). Seibutsu Butsuri, 2007, 47, S73.	0.1	O
88	3P248 Analysis of molecular property of ascidian opsin, Ci-opsin1(18A. Photobiology: Vision &) Tj ETQq0 0 0 rgBT	/8.yerlock	10 Tf 50 14
89	Targeted deletion of miRNAs and cis-regulatory modules associated with cone opsin genes in medaka. Mechanisms of Development, 2017, 145, S145-S146.	1.7	O
90	Developmental shift of Rx expression from non-photoreceptor to photoreceptor lineage as a mechanism for photoreceptor cell specification in Ciona intestinalis. Mechanisms of Development, 2017, 145, S151.	1.7	0

#	Article	IF	CITATIONS
91	Evolution of Anural Development in Ascidians: Role of Muscle-specific Differentiation Genes. , 2001, , 225-229.		O
92	2P352 Ca^<2+> imaging of the muscle and neural cells in ascidian larva upon the step-down of light(Photobiology-vision and photoreception,Oral Presentations). Seibutsu Butsuri, 2007, 47, S201.	0.1	0
93	Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. Journal of Clinical Investigation, 2010, 120, 1362-1362.	8.2	O