
Nitin K Chaudhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6379033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO ₂ into epoxides for cyclic carbonate formation. Catalysis Reviews - Science and Engineering, 2022, 64, 356-443.	12.9	43
2	Rational competent electrocatalytic oxygen evolution reaction on stable tailored ternary MoO ₃ â€NiOâ€activated carbon hybrid catalyst. International Journal of Energy Research, 2022, 46, 12549-12564.	4.5	3
3	Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines <i>via</i> one-pot environmentally benign conditions. RSC Advances, 2022, 12, 14740-14756.	3.6	9
4	Metallic nanosponges for energy storage and conversion applications. Journal of Materials Chemistry A, 2022, 10, 14221-14246.	10.3	8
5	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	5.9	66
6	Acknowledgement to Reviewers of Polymers in 2019. Polymers, 2020, 12, 172.	4.5	0
7	Carbon Transitionâ€metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors. Chemistry - an Asian Journal, 2020, 15, 1628-1647.	3.3	37
8	Pt–Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. Journal of Materials Chemistry A, 2019, 7, 17183-17203.	10.3	48
9	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	3.4	79
10	Acknowledgement to Reviewers of Nanomaterials in 2018. Nanomaterials, 2019, 9, 108.	4.1	0
11	Water Splitting: Topotactic Transformations in an Icosahedral Nanocrystal to Form Efficient Water-Splitting Catalysts (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970002.	21.0	2
12	Topotactic Transformations in an Icosahedral Nanocrystal to Form Efficient Water‣plitting Catalysts. Advanced Materials, 2019, 31, e1805546.	21.0	76
13	Ferric phosphide carbon nanocomposites emerging as highly active electrocatalysts for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 16011-16018.	3.3	12
14	Recent advances in electrocatalysts toward the oxygen reduction reaction: the case of PtNi octahedra. Nanoscale, 2018, 10, 20073-20088.	5.6	60
15	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	10.4	54
16	Morphology controlled synthesis of 2-D Ni–Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction. Nano Convergence, 2017, 4, .	12.1	28
17	Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis. Nano Energy, 2017, 42, 17-25.	16.0	94
18	Urine to highly porous heteroatom-doped carbons for supercapacitor: A value added journey for human waste. Scientific Reports, 2017, 7, 10910.	3.3	55

NITIN K CHAUDHARI

#	Article	IF	CITATIONS
19	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	5.6	403
20	MXene: an emerging two-dimensional material for future energy conversion and storage applications. Journal of Materials Chemistry A, 2017, 5, 24564-24579.	10.3	450
21	N-Carbon from Waste Tea as Efficient Anode Electrode Material in Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 1838-1846.	0.9	3
22	Cubeâ€like αâ€Fe ₂ O ₃ Supported on Ordered Multimodal Porous Carbon as High Performance Electrode Material for Supercapacitors. ChemSusChem, 2014, 7, 3102-3111.	6.8	90
23	Heteroatom-doped highly porous carbon from human urine. Scientific Reports, 2014, 4, 5221.	3.3	119
24	Hematite (α-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery. Electrochimica Acta, 2013, 114, 60-67.	5.2	54
25	Peroxidase mimic activity of hematiteiron oxides (α-Fe ₂ O ₃) with different nanostructures. Catalysis Science and Technology, 2012, 2, 119-124.	4.1	75
26	Solvent controlled synthesis of new hematite superstructures with large coercive values. CrystEngComm, 2012, 14, 2024.	2.6	23
27	Low Temperature Synthesis of Single Crystalline Iron Hydroxide and Oxide Nanorods in Aqueous Media. Journal of Nanoscience and Nanotechnology, 2011, 11, 4457-4462.	0.9	9
28	Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles. Bulletin of the Korean Chemical Society, 2011, 32, 2051-2057.	1.9	26
29	A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochimica Acta, 2010, 55, 4543-4550.	5.2	58
30	Effect of pH on electrocatalytic property of supported PtRu catalysts in proton exchange membrane fuel cell. Catalysis Today, 2010, 158, 354-360.	4.4	13
31	Incorporating Hierarchical Nanostructured Carbon Counter Electrode into Metal-Free Organic Dye-Sensitized Solar Cell. Langmuir, 2010, 26, 11238-11243.	3.5	104
32	Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. CrystEngComm, 2009, 11, 2264.	2.6	50
33	Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. Journal of the American Chemical Society, 2009, 131, 15330-15338.	13.7	277
34	Size Control Synthesis of Uniform β-FeOOH to High Coercive Field Porous Magnetic α-Fe ₂ O ₃ Nanorods. Journal of Physical Chemistry C, 2008, 112, 19957-19962.	3.1	99
35	Fluorescence Enhancement of Ruthenium Complex on Silver Using Different Chain Length Carboxylic Acid Terminated Thiols: Distance and Metal Concentration Study. Journal of Nanoscience and Nanotechnology, 2008, 8, 4747-4751.	0.9	3
36	Supported copper oxide as a highly active/selective catalyst for the epoxidation of styrene by TBHP to styrene oxide. Catalysis Communications, 2007, 8, 1556-1560.	3.3	46

#	Article	IF	CITATIONS
37	Epoxidation of styrene by anhydrous hydrogen peroxide over boehmite and alumina catalysts with continuous removal of the reaction water. Journal of Molecular Catalysis A, 2005, 227, 217-222.	4.8	38
38	Biphasic selective epoxidation of styrene by t-butyl hydroperoxide to styrene oxide using potassium chromate or dichromate catalyst in aqueous medium. Catalysis Communications, 2004, 5, 205-208.	3.3	15