Divij Mathew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6378631/publications.pdf

Version: 2024-02-01

		331670	5	526287
30	6,127	21		27
papers	citations	h-index		g-index
50	50	50		12032
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Cytomegalovirus Latent Infection is Associated with an Increased Risk of COVID-19-Related Hospitalization. Journal of Infectious Diseases, 2022, 226, 463-473.	4.0	39
2	Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell, 2022, 185, 1875-1887.e8.	28.9	148
3	Signaling Through $Fc\hat{l}^3$ RIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Frontiers in Immunology, 2022, 13, 834988.	4.8	26
4	Abstract 3579: T cell intrinsic DNA damage and repair response as a novel marker associated with clinical response to PD-1 blockade. Cancer Research, 2022, 82, 3579-3579.	0.9	0
5	Abstract PO068: Distinct immune signatures predicting clinical response to PD-1 blockade therapy in gynecological cancers revealed by high-dimensional immune profiling. , 2021, , .		O
6	InÂvivo CD8+ TÂcell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 2021, 184, 1262-1280.e22.	28.9	107
7	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. Science Immunology, 2021, 6, .	11.9	152
8	Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell, 2021, 184, 1858-1864.e10.	28.9	332
9	Distinct antibody and memory B cell responses in SARS-CoV-2 na \tilde{A} ve and recovered individuals after mRNA vaccination. Science Immunology, 2021, 6, .	11.9	556
10	CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature Medicine, 2021, 27, 1280-1289.	30.7	365
11	Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nature Immunology, 2021, 22, 1008-1019.	14.5	116
12	Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nature Medicine, 2021, 27, 1990-2001.	30.7	396
13	Rapid induction of antigen-specific CD4+ TÂcells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 2021, 54, 2133-2142.e3.	14.3	367
14	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	12.6	609
15	310â€T cell intrinsic DNA damage and repair response as a novel marker associated with clinical response to PD-1 blockade. , 2021, 9, A335-A335.		0
16	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	12.6	1,280
17	Comprehensive mapping of immune perturbations associated with severe COVID-19. Science Immunology, 2020, 5, .	11.9	677
18	SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Science Immunology, 2020, 5, .	11.9	121

#	Article	IF	CITATIONS
19	Lysophosphatidic Acid Is an Inflammatory Lipid Exploited by Cancers for Immune Evasion via Mechanisms Similar and Distinct From CTLA-4 and PD-1. Frontiers in Immunology, 2020, 11, 531910.	4.8	10
20	186â€Distinct immune signatures predicting clinical response to PD-1 blockade therapy in gynecological cancers revealed by high-dimensional immune profiling. , 2020, , .		1
21	LPA5 Is an Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early TCR Signaling. Frontiers in Immunology, 2019, 10, 1159.	4.8	58
22	Anti-CD8 monoclonal antibody-mediated depletion alters the phenotype and behavior of surviving CD8+ T cells. PLoS ONE, 2019, 14, e0211446.	2.5	8
23	ARHGEF1 deficiency reveals $\widehat{Gt}=13$ -associated GPCRs are critical regulators of human lymphocyte function. Journal of Clinical Investigation, 2019, 129, 965-968.	8.2	6
24	Abstract A202: Lysophosphatidic acid impedes the effector function of CD8+ T-cells through LPA5R. , 2019, , .		0
25	N-WASP is required for B-cell–mediated autoimmunity in Wiskott-Aldrich syndrome. Blood, 2016, 127, 216-220.	1.4	24
26	Contrasting Roles for C/EBP $\hat{l}\pm$ and Notch in Irradiation-Induced Multipotent Hematopoietic Progenitor Cell Defects. Stem Cells, 2015, 33, 1345-1358.	3.2	17
27	Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. Journal of Clinical Investigation, 2015, 125, 4135-4148.	8.2	159
28	Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. Journal of Allergy and Clinical Immunology, 2014, 133, 880-882.e10.	2.9	54
29	Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia. Clinical Immunology, 2013, 146, 84-89.	3.2	6
30	B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood, 2012, 119, 2819-2828.	1.4	99