
Yixuan J Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6378626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	28.9	1,257
2	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	12.6	808
3	The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology, 2020, 5, .	11.9	772
4	A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020, 586, 560-566.	27.8	527
5	A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell, 2020, 183, 1070-1085.e12.	28.9	472
6	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	28.9	446
7	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	12.6	285
8	Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Molecular Cell, 2020, 80, 1078-1091.e6.	9.7	255
9	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	12.6	210
10	De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 2020, 370, 1208-1214.	12.6	172
11	Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26915-26925.	7.1	104
12	Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nature Structural and Molecular Biology, 2021, 28, 747-754.	8.2	91
13	Comparison of Subgenomic and Total RNA in SARS-CoV-2-Challenged Rhesus Macaques. Journal of Virology, 2021, 95, .	3.4	87
14	Characterization of a Pathogenic Full-Length cDNA Clone and Transmission Model for Porcine Epidemic Diarrhea Virus Strain PC22A. MBio, 2016, 7, e01451-15.	4.1	75
15	Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. Journal of Clinical Microbiology, 2021, 59, e0052721.	3.9	71
16	Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. Journal of Virology, 2017, 91, .	3.4	68
17	Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Veterinary Microbiology, 2017, 201, 62-71.	1.9	44
18	Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011–2017. Infection, Genetics and Evolution, 2019, 69, 153-165.	2.3	42

YIXUAN J HOU

#	Article	IF	CITATIONS
19	Deletion of both the Tyrosine-Based Endocytosis Signal and the Endoplasmic Reticulum Retrieval Signal in the Cytoplasmic Tail of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Pigs. Journal of Virology, 2019, 93, .	3.4	40
20	Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convalescent Individuals. MSphere, 2021, 6, e0027521.	2.9	36
21	Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- <i>O</i> -Methyltransferase and the Endocytosis Signal of the Spike Protein. Journal of Virology, 2019, 93, .	3.4	35
22	Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. International Journal of Molecular Sciences, 2019, 20, 5478.	4.1	33
23	Quantifying membrane protein oligomerization with fluorescence cross-correlation spectroscopy. Methods, 2018, 140-141, 40-51.	3.8	31
24	Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research, 2019, 15, 26.	1.9	30
25	GTPase-activating protein-binding protein 1 (G3BP1) plays an antiviral role against porcine epidemic diarrhea virus. Veterinary Microbiology, 2019, 236, 108392.	1.9	24
26	New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017. Archives of Virology, 2018, 163, 2485-2489.	2.1	21
27	The enhanced replication of an S-intact PEDV during coinfection with an S1 NTD-del PEDV in piglets. Veterinary Microbiology, 2019, 228, 202-212.	1.9	17
28	Crucial mutation in the exoribonuclease domain of nsp14 of PEDV leads to high genetic instability during viral replication. Cell and Bioscience, 2021, 11, 106.	4.8	17
29	Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118126119.	7.1	17
30	Human Norovirus Histo-Blood Group Antigen (HBGA) Binding Sites Mediate the Virus Specific Interactions with Lettuce Carbohydrates. Viruses, 2019, 11, 833.	3.3	12
31	Complete Genome of Transmissible Gastroenteritis Virus AYU Strain Isolated in Shanghai, China. Journal of Virology, 2012, 86, 11935-11935.	3.4	10
32	Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses, 2021, 13, 122.	3.3	10
33	Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. MBio, 2021, 12, .	4.1	8
34	Ethnoracial Disparities in SARS-CoV-2 Seroprevalence in a Large Cohort of Individuals in Central North Carolina from April to December 2020. MSphere, 2022, 7, e0084121.	2.9	6